
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 08

Welcome back to this course on C Programming and Assembly language. So, we were in

module 2 discussing inline assembly and C programming. So, let us proceed with our

discussion  and  in  this  lecture  we  will  look  at  the  topic  of  pointer  arithmetic  at  an

assembly language level .

(Refer Slide Time: 00:29)

So, pointers so, let us start with a simple C example. So, let us consider a very simple

example here, I have char star pointer pA equal to 0 and I have an int star pointer pB

equal to 0. So, what we want to understand is when we do pA plus plus and when we do

pB plus plus what is the difference at an assembly language level .

So, let us look at the assembly translation of this program first. So, since we have char

star you know its just a data type , there is a variable pA and that is being initialized to 0 .

So, if you look at this, this will simply translate to MOV pA comma 0 x 0 0 0 0 right

how many over 0’s that are and if you look this it would translate to MOV pB comma 0

x 0 0 0 0 . So now, the point is I am doing a pA plus plus . So, what does this instruction



actually do in C? It is pA equals pA plus 1  and on the other hand when you do pB plus

plus it will actually be pB plus 4 .

So, why is this? Because, the character pointer is a pointer to a set of characters and each

character occupies a single byte in memory. On the other hand the integer pointer pB is a

pointer to a set of integers and each integer occupies 4 bytes in memory . So, therefore,

when I go ahead and perform this particular operation, this is what would effectively

happen. You will have MOV EAX comma pA ADD EAX comma 1  or 0 x 0 0 0 1. And,

then I would do MOV pA comma EAX. Similarly, if I look at the translation of this

instruction it would be MOV EBX comma pB  ADD EBX comma 0 x 0 0 0 4.

And finally, I MOV it back into my pB. So, this value that gets added is very much

dependent  on  the  data  type  and  when  you  are  dealing  with  pointers  and  pointer

arithmetic  specifically you will always find that the addition happens  depending on the

size of the data that is being stored. So, let us look at some of these examples of you

know pointers and how to deal with pointers at an assembly level .

(Refer Slide Time: 04:47)

So, let us look at  I want to write an assembly program to calculate STRING LENGTH

of  some given string .  So,  let  us  look at  both  the  C implementation  as  well  as  the

assembly implementation. So, main and I have char star pA, this is some constant string

THIS IS and what I actually want to do is, I want to find the number of characters in the

string. And, we all know that a string is stored as a sequence of ASCII numbers and its



terminated by a backslash 0. So, if you look at how this particular string is stored in

memory, it would be a sequence of bytes  which would basically look like 47 48.

These do not necessarily translate to the correct ASCII values, but this is the typical

ASCII value of alphabets and so on. So, you have a whole bunch of them and after you

are done with the final character you have a value 0 that is stored in that . So, if you look

at this particular data size is 1 byte. So, the idea is to simply scan through the string and

count the number of bytes until you hit a 0 so, that is what we want to do. So, in C what

would you do? You would basically  you know have an integer i  equals 0 and count

equals 0 .

This is where I am going to count my variable and i is just an index variable. So, what

you do you basically say that while pA of i is not equal to backslash 0 you just simply do

what? i  plus plus and count plus plus. So, it  will  simply scan through each of these

things, find out what the count is, I mean find out what the stored character is; if it is not

backslash  0  it  will  just  keep  incrementing  both  the  index  and  the  counter  .  So,  oh

typically here the variable i is and count seem to be redundant, you can just do with one

of them .

So, typically you could even do away with this and you just in the end of this you just

say count equals i. So, if you go ahead and translate each of these statements in an un

optimized manner you will get a whole lot of instructions which is very inefficient. So,

let us look at the optimized you know assembly implementation of this straightaway ok.

So, what does this char star pA equal to you know something mean? It basically says that

this  is a fixed string that is stored in data somewhere.

So, this we will translate so, let us assume that this guy is stored in some location ADDR

starting address is ADDR. So, this will effectively translate to MOV pA comma ADDR,

you know whatever that constant number is that constant address is. So, then you have

these two instructions which basically is simply initializing i and so, MOV i comma 0

MOV comma 0 . So now, instead of going and just blindly translating I am going to take

this block and do an inline assembly implementation of the block.

So, what am I going to do here? I am going to simply say that I need to scan character by

character and keep counting until I hit a backslash 0. So therefore, what do I need to do?

I need a counter register  so, I will MOV ECX comma 0, then I will MOV the address



that is there into some EBX comma pA . And, what am I going to do? I am going to

compare and see if the contents pointed to by EBX is 0 or not. So, I will do a compare

EBX comma 0 x 0 0 0 0 .

Now, here it is important to know we know what we are comparing against. So, the 0 x 0

0 4 0s is wrong since each of this characters occupy only 1 byte what you have to look

for is not a word, but a byte. So, you have to look for 0 x 0 0 and the prefix that you will

add here is going to be word point byte pointer , byte pointer pointed two by EBX. If this

is 0 0 0 then essentially I am done ; so, this is jump on 0 flag to DONE . DONE is

basically some address in the code segment, I will show you where that label will come

in the end.

Now, if I do not encounter a backslash 0 which means that my compare instruction has

not resulted in 0, it means there is a valid character and I need to continue counting. So,

therefore, what do I do is when the condition fails so, jump on 0 to done is going to go to

another location . So, let me just scroll down a little here yeah  so, let me take this off.

(Refer Slide Time: 12:29)

So, my DONE is somewhere here ok. So, we will fill in what the instruction has to be a

DONE a little later. Now, if the jump on 0 condition does not happen which means that

there  is  a  valid  character  I  need to  continue  counting.  So therefore,  I  will  continue

counting by incrementing my ECX right and also incrementing my EBX. So, if my jump

on 0 condition is not satisfied, it means there is a valid character and I need to continue



counting. And therefore, I will unconditionally jump back to my compare part  which is

basically  so, my let me put the labels in a different colors.

So, if the jump on 0 does occur, it  means I am done and the string length has been

calculated and the value is available now in my ECX register. And therefore, if I want to

calculate the you know put the value in count, then all I have to do is MOV; let us use

the red here MOV comma ECX . So, what we have done here effectively is just simply

scan the array for a backslash 0 and counted till we encountered a backslash 0. So, the

important thing to note here is while it is for me to use this increment operation out here

on ECX, I may not be able to use the INC EBX always.

Because, INC increments the count, the value of the register exactly by 1, but suppose

this where an integer array instead of a character array then I have to replace this with an

appropriate instruction which is basically ADD EBX comma maybe 4 or 2 or whatever,

2 slash 1. And, also instead of this byte pointer I might have to simply put BYTE WORD

slash DWORD. And, even the constant that I am going to search for is now going to be

either an 8 bit number, 16 bit number or a 32 bit number. So, with that we have the

looked at the assembly level changes that come in when we deal with pointers.

(Refer Slide Time: 15:37)


