
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 07

Welcome back to this course on C Programming and Assembly language. We are

currently in module 2 which deals with C programming and inline assembly. In the last

couple of lectures we discussed some elementary way of interspersing inline assembly

instructions with C programs and we are discussed how to for example, evaluator and

arithmetic expression in terms of variables and put them into registers. Then we later on

implemented a multiplication program in assembly language using looping , using the

jump on no zero kind of instructions.

So, let us processed in that direction and in this lecture, we will discuss some ideas on

converting C programs to assembly language both in an optimized and un-optimized

manner.

(Refer Slide Time: 01:03)

So, let us start with a very simple example. I want to divide two integers and put the

value x by y in the variable z and the reminder x percent y into a variable called r and I

want to implement this in a particular C program. So, now, let us look at the C

implementation first and then we can go ahead and look at the assembly implementation.

So, the C implementation is as follows main and I have int x let us say equal to 10, y

equal to 20 then int z comma r. So, how I do this? I would simply say z is equal to x by y

and r is equal to x percent y. Of course, you could choose to print these values after this

program, but let us leave out those aspects for now. So, let us first look at a very

elementary way of implementing or translating this program into assembly language

without any optimization.

So, therefore, we have we look at the following statements there is int x equal 10 and y

equal to 20. So, this is basically a declaration of x and y as integers which are, is going to

be 4 bytes ; 32 bits long, but we are also initializing these variables with values of 10 and

20. So, if you look at the assembly instruction, then this particular instruction would get

translated into the following which is basically MOV x comma 0 x you know 000A . It is

a 32 bit number, but I am leaving out the trailing zeros here and MOV y comma 0 x 00

so, 16 plus 4 yeah; this is basically 20 int hexadecimal.

Next there is a second statement which is basically int z comma r. So, here we are not

initializing any of these instructions with or variables with any value and therefore, this

will really not translate into any particular assembly implementation. Next we move on

to the statement z equal to x by y .

(Refer Slide Time: 04:31)

So, we have the statement z is equal to x by y and both are integers. In order for the

microprocessor to perform a division instruction just like multiplication, you have to use

the EAX register implicitly .

So, just to remind you of what happens, you have to you can say DIV EBX, then what

would happen is EAX would get the quotient by EBX and EDX would get the reminder

EAX reminder EBX. So, in order to perform a division operation, I need to setup certain

registers first. So, therefore, I go ahead and first MOV EAX with x right EAX simply

gets the value x. Now I can go ahead and perform a division instruction on this EAX

right. So, I can say DIV of y whatever this y is let us not worry about it for now ; it is an

abstract entity for now where I have a variable in which I can read from or write to some

particular value .

And because these are integers, note that the instruction that actually gets implemented

in assembly has to be the instruction called IDIV which is basically integer division or

signed division that has to be done . So, in the end of this particular operation, what

would have happened is EAX would have got x by y QUOTIENT and EDX would have

got x percent y reminder. So, now, I need to go ahead and initialize my z with the

quotient and therefore, all I have to do is MOV z comma EAX; z is equal to

QUOTIENT.

So, these an MOV on to the next assembly instruction the; next C instruction which is z

is equal to x percent y. So, here again you have to do and other division operation in

order to obtain the quotient and sorry this is not z; this is r is equal to x percent y. So,

note that this division operation or the reminder operation in C could have been done

with any two other variables. So, typically if you look at an unoptimized compiler

output, it would not worry about if these registers have changed or not from one C

instruction to the next. And therefore, it would go ahead and setup this division much the

same way as it did in the previous C instruction.

So, it would repeat exactly the same thing EAX comma x , then it would do IDIV y and

the result of this is that EDX will now have the instruction or the value of the reminder.

Now on finishing this instruction all I have to do is MOV r comma EDX. So, this is

nothing, but the variable r getting the reminder.

So, what you notice here is that there is a lot of redundancy in the instructions that are

generated for and unoptimized compiler output . For example, you see very clearly that

when I finish my operation here EAX and you know load EAX with x and IDIV with y,

EDX has already been evaluated and hence there is no real need for me to go ahead and

perform this second division operation. So, that is the crux of unoptimized compiler

output and optimized compiler output. So, if we were to go ahead and do this particular

seek take translate this particular C program into assembly, then this is what we would

have done .

So, we have int x equal to 10, y equal to 20 . This would simply translate to two

instructions MOV x comma 0x00 MOV y comma 0x001 4 , and then the there is the next

instruction which is int z comma r which basically translates to nothing in assembly.

Then the z is equal to x by y and r is equal to x percent y you would simply translate to

the following instructions which is MOV EAX comma x IDIV y, MOV z comma EAX,

MOV r comma EDX.

And so, what we are effectively doing is we have only one set of division operation that

is being done as shown here. On the other hand, the unoptimized complier output has

two division operations that are being done and the reason for that is, you are just taking

line by line and just translating it blindly into the necessary assembly that will result in

the correct output. We are not trying to keep track of the contents of the registers

between two instructions.

Let us now consider another example in order to look at this concept of optimized and

unoptimized compiler output.

(Refer Slide Time: 12:35)

.

So, let us consider this C program main have int a, b, c, d and int x equals 10 and y

equals 5. So, let us say I want to do the following a equals x plus y, b equals a minus y, c

equals b into y and d equals c by y this is the quotient by the way ; just to remind you

this is the because we are talking about integer arithmetic here.

So, let us look at an unoptimized compiler output first which basically is simply going to

take line by line of the C program and just translate it to its corresponding assembly

output . So, you take this statement because there is an assignment happening. This will

simply translate to MOV x comma 0x000A and this the other one will translate to MOV

y comma 0x0005.

So, now let us look at the first evaluation that we want to do which is basically a equals x

plus y. I want to now look at the assembly output of this block. So, in order to perform

any ALU operation, I need to MOV certain operands into registers. So, therefore, let me

arbitrarily pick EAX as my register and I am going to MOV EAX comma x . So, what is

this instruction do? EAX simply gets the value x and then I am going to perform an

addition on this which is ADD EAX comma y.

So, what is this two EAX is simply going to be EAX or that already has x so, it will be x

plus y. Now I need to MOV this sum into my variable a so, I will do MOV a comma

EAX. So, a will get x plus y here. Now let us look at the next C instruction which is b

equal to a minus y. So, I want to just blindly translate this into some setup assembly

instructions which are correct. So, what do we do? We MOV again this instruction; this

time let me pick b x EBX comma a and then I will directly do a subtract EBX comma y

and then MOV b comma EBX .

So, what am I doing here? I am loading EBX with a, I am loading EBX with a minus y

and here I am saying b is a minus y. Similarly if you go ahead and translate the next

instruction which is basically c is equal to b into y; I mean I have to store one of the

operand in EAX. So, therefore, I will say MOV EAX comma b and I will simply say

IMUL y . And in the end of this instruction, I could simply say; let me just put some

space here; MOV c comma EAX.

Similarly, you can do it for the fourth division operation as well. So, the key point here is

that if we just blindly translate every C instruction into assembly, what you will get is a

very unoptimized output in the sense that there are lot of MOV instructions which are

severely redundant in this process. For example, if you look at this particular instruction

MOV EBX comma a, it is totally unnecessary because EAX already has the right value

in the previous step.

So, if you look at this guy, the previous step already has the value of a in EAX. So,

without loading anything into EBX, you can simply subtract directly from EAX and

obtained the value of b . Now similarly if you look at this particular operation now, it is

totally redundant because we are unnecessarily loading the value of b again into this

EAX register and so on. So, let us now look at what a what an optimized output is lie by

considering what the contents of the register a was in the previous instruction .

(Refer Slide Time: 19:07)

So, we will now look at optimized output. So, what I want to do is x plus y, b equals a

minus y, c equals b into y and d equals c by y. So, what I am going to do is because the

multiplication and division typically needs EAX I am going to simply deal only with

EAX as my primary operand throughout. So, what do I do? I first MOV EAX comma x

and I simply do and ADD EAX comma y. So, this is EAX is x plus y. Now since my

EAX already has the sum x plus y or the variable a, I do not need to MOV it explicitly

into another register before starting the next instruction. So, what I will just do here is, I

will just MOV my EAX into the variable a .

But EAX still has the sum x plus y and therefore, now I can simply go ahead and do

subtract EAX comma y. So, what does this do? It simply does EAX is a minus y and

now I just have to MOV this result into the variable b. Now similarly I go ahead and

perform my multiplication operation directly here on let me call it IMUL of y. So, what

is this? This is EAX is what it has the value b into y and of course, I MOV the value

from EAX into the variable c.

Now, I go ahead and perform my division as well because the value of c is already in

EAX now; IDIV y which implies EAX now has the value c by y and of course, I MOV

the quotient into the variable d and the quotient is available in EAX. Now note that I

could for example, add another thing which is c percent y which implies without adding

any new instruction, I can simply go ahead and let me not call this d; I will call this e

another variable and I am I will simply add another instruction here; MOV e comma

EDX.

So, what you see here is we have got rid of so many redundant MOV operations in order

to optimize this assembly code. So, you must realize that unless you use a compiler in a

particular optimized mode, it may not be possible to always get the most optimized and

quickest instruction set in the assembly level.

(Refer Slide Time: 23:27)

