
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 06

So, welcome back to this C Programming and Assembly language course. In the last

module we discussed in reasonable detail the various instructions from the 886

architecture that are relevant to C programming, we discussed a few examples and

hopefully the assignments would have reinforced many of those concepts. So now, we

move on to module 2 which essentially deals with the C programming and inline

assembly.

(Refer Slide Time: 00:43)

So, primarily we are going to deal with C programs inline assembly. So, what is inline

assembly? Inline assembly is nothing, but a simple way of moving from a C program to

assembly language and then coming back to a C program.

So, essentially it s a way in which you can intersperse assembly instructions in between a

high level C like program, by the way before I proceed here I have to mention that like I

said in my introductory class that I assume that the viewers and the students of this

course are already familiar with C programming. And I am not going to go into any

detail not even as much detail as I did for the assembly language of 886, I am not going

to go into any such detail of the C programming syntax or the functionality or you know

any such thing. I am going to primarily deal only with inline assembly language

examples and thereby reinforce some of the C programming concepts. So, you can

always go back and refer Kernighan and Ritchie in case you are in doubt of any of these

C syntax or the C functionalities.

(Refer Slide Time: 02:19)

So, what are we going to do in module 2? So, we will primarily deal with C

programming inline assembly then so, we will talk about some of the data types and their

sizes you know just to make sure that we tie it well with our discussion on the micro

process that we had in module 1.

Then we will look at some very specific examples. So, this module will be primarily run

based on some examples, but the examples have been carefully chosen to drive home a

certain concept which can be modified later or will become much clearer as we go on

with the course. So, we will look at some ALU operations, string length function,

multiplication, then we look at swapping of two functions of two variables in a function

in some detail so, there are various ways in which you can do it in C.

So, we will look at how you can actually do this better with assembly language how

would you do this if you were to do it using a function instead of swapping variables

within within that scope. So, these are some nitty gritties and some details that get

driven home when we discuss these particular examples we will come to it a little later.

So, first of all before I proceed into concrete examples let me also state that there are

different kinds of compilers there is a GCC compiler, there is a turbo C compiler, there is

a Microsoft visual C compiler and so on, there are many compilers for C and C plus plus.

So, which one do I pick so? I have picked technically should not matter which one you

pick, because they are all ultimately they all implement the same functionality, but I have

picked a compiler which essentially allows this inline assembly coding most easily .

So, to do inline assembly programming you need to follow a certain syntax certain

compilers like GCC, the syntax is pretty complex and is not worth it for us because you

do not want to get stuck in the syntax of these operations rather than actually

understanding the concept. So therefore, I have picked the MSVC compiler , this is the

Microsoft visual C compiler, C or C++ compiler does not matter. So, let us quickly get

into you know what inline assembly is all about.

So, let us assume that we have this function void main int x equals to and I m going to do

you know x is equal to x plus 4, printf slash n percent d comma x. So, let us assume that

I want to translate this particular instruction alone into assembly, I want to do only this

instruction in assembly. I want to leave the rest of the syntax as it is, which means that

the rest of my function has to be interpreted as a C program which means I can follow

the syntax of C programming there, only certain key instructions which I want to speed

up I want to move to assembly language.

So, it turns out that it is very much possible and in Microsoft visual C or visual C plus

plus that is achieved simply by putting this directive called underscore underscore asm

and in flower bracket you go ahead and write any assembly instructions. So, you can put

in any assembly instructions here, now the beauty is that the variable names x y and z

whatever we have as variables can continue to be used inside this assembly directive

flower braces that we have put. And we can also use all the registers and other assembly

instructions as it is from the assembly instruction set that we have.

(Refer Slide Time: 07:23)

So, let us look at a very concrete example first . So, let us assume that I want to do this x

equal to x plus 2 operation in assembly . So, what do you do? So, I will write underscore

underscore asm bracket open the instruction I want to do in comments I am going to put

it here is x plus 2. So, what do you do? You just say move EAX comma x.

Now, what this x is in terms of microprocessor data and microprocessor registers we will

look at later let us not worry about it now, for now assume that x is a variable and is

accessible inside this in inline assembly portion as well. So, then what do I do? I do add

EAX comma 0 x 0 0 0 2 . So, what is it done? It has simply moved EAX the register it

has got the value x here, it has done EAX EAX plus 2 this value has not yet got replaced

into x.

Therefore, I need to execute another instruction which is move x comma or rather small

x EAX. So, this executes the instruction where x will eventually get the value EAX. So,

now, if I go ahead and do my printf percent d comma x, what gets printed here is of

course, it depends on what x was initialized 2. So, x was initialized to 2 here .

So therefore, this will simply print 4 for you here. So, notice how we simply translated

only this instruction x equal to x plus 2 into a particular assembly block, this is known as

inline. So, what we are going to do in this module is to reinforce the assembly language

instructions that we learnt in module 1, through inline assembly C programming. So, that

way we sort of cover some concepts of C as well as reinforce the instruction set that we

learnt in module 1.

So, with regard to that let us look at our first example, write an assembly program to

evaluate the following expressions . So, let us assume all variables are 32 bit integers so

that brings us to an interesting discussion, saying what are the typical data types that we

will use in C. So, typically these remember that the logical memory map allows us to

deal with multiples of bytes.

So; obviously, the smallest unit that we can deal with is going to be a byte of data. So,

therefore, byte of data so, this is what is known as a character CHAR in C. Now you

could also deal with a word of data depending on you know whether you are dealing

with an older processor, a new processor or with what kind of compiler this could either

be a SHORT integer or an integer itself.

Now, we could also deal with the D WORD of data, again depending on the compiler

this could be a LONG INT or it could be an INTEGER. So, the main point is that

because the registers and the logical address mapping is going to deal with multiples of

bytes or words or D words the data types in C are also mapped to similar sizes and that is

what we see in all our compilers across various kinds of processors.

(Refer Slide Time: 12:47)

So, here this example let us assume that all variables are 32 bit integers and we want to

perform the operation x into y plus a minus b and load it into EAX register. We want to

do x x or y or a and b and load it into the EBX register ok. So, let us start of by writing

our inline assembly.

(Refer Slide Time: 13:17)

Let us void main going forward I may not always write this void main. So, let s assume

that int x equals 2, y equals 3, a equals 4, b equals 5 and what is the operation that we

want to perform, EAX should get loaded with x into y plus a minus b. So, let us go ahead

and do this thing in assembly language underscore underscore asm. So, what do we do,

we first load x into EAX, remember that when we want to do multiplication EAX is an

implicit register and because this is a 32 bit integer that we are talking about we have to

deal with EAX and not just a x.

So, therefore, MOV EAX comma I will just call it x, then I am going to do a MUL y. So,

what is this instruction done for us, it is simply loaded EAX with the value x. What is

this operation done, it has loaded EDX and EAX together the 64 bit number as x into y.

Now, I go ahead and add remember that now EAX has my answer there . So, I go ahead

and add a to it sorry ADD EAX comma a and finally, I subtract EAX comma b. So, of

course, this particular program will work only if the higher EDX happens to be 0 . So, it

is an interesting exercise I leave it to you to figure out how to modify this, if EDX also

happens to be a non 0 number because of the multiplication.

So, what are we doing here, EAX is simply now x into y plus a and EAX eventually is x

into y plus a minus b. So, I can close this bracket and this concludes our arithmetic

operation that we wanted to do x into y plus a minus b and we are loading the result

eventually just in EAX we are not interested in getting this to any other variable.

So, now let us look at the logical operation we wanted to implement EBX equals x x or y

or a and b, remember all these are bitwise operations. So, therefore, I again go ahead

open my underscore underscore asm block I load EBX with x, then XOR EBX with y,

then I have to know because there is a bracket I have to do the a and b very carefully I

MOV ECX with a, then I do an AND of ECX with b and then I do an OR of EBX

comma ECX.

So, this operation is EBX will get x, this operation is EBX is x x or y, this operation is

ECX gets a, this is ECX is a and b bitwise and the final operation is EBX equals x x or y

or a and b. So, I can close this and of course, I eventually I can close my C function as

well out here. So, there are 2 blocks that we have introduced into the C programming

syntax to just illustrate the concept of inline assembly, this is 1 inline INLINE CODE 1,

2. So, with that now let us move on to another interesting example, which is you know

where we are going to reinforce the concept of jumped instructions and loops in

assembly language.

(Refer Slide Time: 20:01)

We want to write an assembly program to evaluate the expression “z equal to x into y”

using repeated addition.

(Refer Slide Time: 20:13)

So, what do we want to perform, we want to perform z equals x into y using repeated

Addition . So, let us assume that x and y are 16 bit short integers right. So, we go ahead x

equals 2 y equals 3 and let us say int z equals 0 and of course, the intended operation is z

equals x times y. This is just one statement in C programming, but we want to now break

this down into a repeated addition operation, how would you do this in assembly just to

drive home the point of doing a branching and looping operation in assembly language.

So, this is the instruction that I want to convert. So, therefore, I will now introduce my

underscore underscore asm block here. So, repeated addition is just adding x y times .

So, what do you do? You first have to clear some register where they are going to add

this any number of times. So therefore, I do x or EAX comma EAX . So, this is EAX

equals 0 irrespective of what EAX was, the value of at the end of this XOR operation is

just 0.

So, I am clearing the register and I am going to MOV ECX with y , this is my counter I

am going to add x that many times with my eventual register. So, what I do is, I start

adding now EAX comma x after this I need to decrement ECX because I have now

added it once I need to decrement ECX remember that on decrementing ECX the 0 flag

may or may not be set. So, you need to do this operation of decrementing or adding x to

itself as many times as the value of ECX does not go to 0.

So, therefore, here you have to do a jump on no 0 to this address here there is let us call

this maybe I will write it in a different color to indicate that this is a label or an address.

So, I am going to jump to this label called MULT. So, here what are we doing, we are

simply loading the COUNTER ECX is which is nothing, but y.

Then add EAX with x I am adding x equals or plus x and this is ECX becomes ECX

minus 1 and as long as it is not 0 you keep adding this x to itself. So, when the for

example, y is 3 here so, after 3 counts y will come down to 0 and that is the condition

when the instruction instead of looping all the way back to MULT will actually proceed

which means, when it hits 0 the 0 flag will be set. And therefore, jump or no 0 will not be

satisfied and the instruction will proceed to the next step and where I am ready to load

my final answer into z.

So, therefore, here MOV z comma EAX so, when you come here z will be x into y. So,

again I finish my inline assembly block and if you want you can do a printf here of

percent d which is z value and you will see that the answer is 6. So, here we have

illustrated apart from all the ALU operations we have also shown how you can exploit

the Jump on NO Zero operation to loop back to a particular address depending on a

particular condition.

So, in the next lecture we will look at some more examples of a string length and so on

to reinforce certain other assembly instructions that we studied in module 1.

(Refer Slide Time: 26:43)

