
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 20

Welcome back to this course on C programming and Assembly language. So, we are in

the last module and we are also in the final lecture of module 4. In the last couple of

lectures, we discuss the impact of assembly translation on various aspects like variable

argument list,  performance impact on recursion,  because of recursion and loops, then

we  also  discussed  about  some  performance  improvement  by  speeding  up  certain

functions like string compare, string length and so on. In this last lecture, I would like to

discuss the concept of security of local variables. 

(Refer Slide Time: 00:49)

So, what I mean here is that a local variable is known to have a scope, . When you enter

the function it comes alive and when you leave that function it is gone. But now we

actually know what this physically means in hardware, . So, we would like to study the

impact,  or the effect of such an implementation on the security of this local variables.

So, let us consider a simple example, . I have a function int fn that takes an int, and

something, . And I have main where I am going to pass, I am going to call this function

with the value 2, .



Now, let us assume that this function fn is doing some sort of an encryption, . You have a

password that is being passed to it this integer n could be for example, some key that you

are passing to it. Then you want to process this key and then figure out the password is

correct or not send it to a database, get back the result see if it is correct or not. So, let us

assume that this n,  or the data that you are operating in this particular function, . So, let

us assume that there are some local variables a b c and so on, . And, then I am doing

some important operations here,  and more than important they are highly critical  or

highly secure pieces of code , that need to be executed, .

So, let us look at by the way let us look at you know I have I am going to call this

function fn of 2, and let us say there is an other function int fn underscore simple,  which

is not doing any critical operation, , but it does some other operation. So, I will call that

simple, . So, what I am going to do now is to look at how the stack gets modified on

calling  this  function  in  this  particular  sequence  and  see  what  happens  to  the  local

variables in fn in the process, . So, let me assume that the stack looks like this, my EBP

is pointing arbitrarily here in main, and ESP is obviously moved up,  because of the

prologue in main.

So, now what do I want to do? I want to call this function of 2. So, what will I do, I will

basically push 2 and call fn, . So, therefore, I will push the value two and my ESP will

now move here and then I am going to call the function fn, and this is my return address

by the way. After I finish fn I will return here address, right. So, the return address will

get pushed onto stack here. And, then I am going to go into the function fn where of

course, the prologue will get executed where I am going to move EBP of main, and then

move my you know of course, in the process ESP would have got moved here and then I

will move my EBP here, . So, EBP will get, EBP will come here and then my ESP will

get, ok. This is my local variable space of fn, .

Now, the local variable a, b, c, d and all that stuff is simply going to exist here, . So,

maybe I will just rub all of this out, I will just say this is the local variable a, b, c and so

on, . So, I execute this function I operate on these variables a, b, c, d and all that and let

us  assume that  somewhere  on  top  you know on  the  topmost  position.  I  have  some

variable z which is storing some important password, . Let us assume that this is some

password value, ok. Let us assume it is an integer,  for now.



So,  now,  I  go  ahead execute  this  function,  I  calculate  this  local  variable  z,  I  finish

execution,  which means that my epilogue will get executed, . What is the epilogue? It is

going to add ESP with 0x maybe 40, bring ESP back here. Then it will pop EBP and

cause my EBP to come back here, . Then I come to the return address, I come here and

my ESP you know you do the stack cleanup and all that and then you come and call this

function fn simple, .

So, now what is going to happen is this stack which was above main is now going to get

over return. So, first of all before that note that after the function fn was executed and the

stack pointer base pointer were all reset back to the values of main, this entire stack is

really untouched, . The values are untouched, not touched, . Which implies that even

after  the  function  fn  has  executed  and  we  have  come  back  to  main  all  those  local

variables simply hold their values as they are. It is just that because the EBP has been

reset  accessing  EBP minus 4 or  EBP minus  8,  does  not  lead  to  accessing  the  local

variables in fn, but it now accesses the local variables in main, . And this is the key point

that I want to convey here when I talk about security of local variables.

So, in spite of coming out of the function these local variable still have their values and

these values if for example, happen to be a password then could be quite critical because

they still exist in the stack, . So, if I do a dump of my program halfway through by just

breaking into the code then I can literally see these values. So, if a hacker gets hold  of

your executable then by just breaking into the code I could see lot of values in this local

variables and infer a lot of information, .

Now, for example, you may argue that, if I call fn simple,  then the existing stack will get

re return,  which is true, right. When I call fn simple for example, then this return address

will  get  modified  to  some other  return  address,  .  Of course  now,  I  am not  pushing

anything on to stack therefore,  instead of this  I will do return address, .  Then I will

basically move my EBP of main into this particular location, EBP of main, right and then

my local variable space of my function fn simple will happen here, , local variables of fn

simple, .

So, the point I am trying to make is because you know this fn simple has a different

number of parameters and so on, it is not necessary that the entire local variable space of

fn  will  get  over  written  in  the  process,  only  part  of  that  may  get  overwritten  and



therefore, this local variable z may never get altered even though fn simple was called

after that, .  This may still,  may still  not get altered,  .  Therefore, you might find that

certain  important  passwords  or  important  encryption  keys  may  be  alive  through  the

entire program in some local variable space on some stack,  and by dumping all of this

out it is possible to get hold of such important information. 

Therefore, if you want to be absolutely sure that you have cleared out all the important

information that was used in your program before you exited a particular function, then

you have to ensure that before you leave that function use reset all these local variables

to some other value, . 

(Refer Slide Time: 11:33)

For example, if I have a function fn, of int n,  int and I have local variables a b,  and then

you do some operations, . So, some operations,  and then normally I would do a return 0,

or some integer value. As we discussed now those local variables a and b will never get

may never get  erased through the entire  life  of the program, unless you call  enough

number of functions and so on, . It is there is a it is a matter of chance. Therefore, in

order to improve the security of these local variables you could add some operations

here, right for example, a equal to 0 and b equal to 0 before you exit this function.

So, now, what we are doing is before you come out of this function you are deliberately

erasing the values that have been stored in a and b, and assuming these are critical pieces

of information, you are resetting this local variables before you exit the function. And



therefore, at any point if you now take a snapshot of your memory the local variable

space will only be alive as long as you are in that particular function otherwise those

local variables will always be 0. So, it is a very interesting result here.

We are used to initializing variables at entry point,  for example, we are used to saying a

equal to 0, and b equal to 0 when we start, but it is now interesting that even before you

exit the function there are certain cases. Of course, there is a penalty of performance, I

have to execute more number of instructions to complete the same function, but I can be

safe and secure by ensuring that all important information in local variables have been

erased before I exit that particular function, . So, this is a very secure way. 

You could in fact, even modify the compiler,  in order to generate this kind of a secure

compilation,  in order to generate such secure code you could alter the compiler itself to

handle this automatically, you do not have to do it very on a case by case basis, . So, with

that  we have looked at  you know a whole lot  of things starting from module 1,  the

including the assembly language of 80 80, x 86 processors, then inline C, then you know

how C program gets translated to assembly and certain the analysis of certain assembly

translations,  and what the impact of those translations are on performance, security and

so on.

(Refer Slide Time: 14:53)

So, before we wind up I would like to just go through this learning objectives again and

ensure that we have covered all of these topics in great detail. So, we started off with the



learning objectives where we wanted to say that once you are done with the course as a

student you should be able to explain how function calls are translated to assembly. We

did a lot of this prologue, epilogue and so on. Explain how parameters are passed to a

function?  why you push parameters right to left, not left to right, you know they have to

be pushed onto stack and so on. 

What it means to say local variables are stored on stack, . Then demonstrate how local

variable space is allocated, we saw which exact instruction allocates local variable space,

. What it means to say local variables goes out of scope after the function call, . We in

fact, just now in this lecture saw that going out of scope does not mean the value is gone,

the value still remains and can be potentially a security threat and to overcome that you

have to reset those variables before you exit the function, .

Then listing out instructions that need to be executed before entering and before exiting

the  function  the  prologue  and  epilogue,   is  something  we  looked  at  in  great  detail.

Various calling conventions,  how stack cleanup happened whether it inside the function

outside the function and so on. Then the difference between C and C plus plus, right; in

C plus plus you have to pass this pointer through the ECX register, . So, this is an other

important difference between C and C plus plus at assembly level, . At a programming

and  syntactical  level  there  are  lots  of  differences,  but  assembly  level  this  is  only

difference, .

(Refer Slide Time: 16:37)



And then we wanted to look at exploiting certain hardware instructions to speed up C

functions like memcpy, string length and so on, . And then we wanted to look at why

recursion is not a great idea for performance. So, even there we saw that the prologue

and epilogue and function parameter passing is a significant overhead to the instruction

that you eventually want to implement in the function and therefore, it is not a great idea

to do recursion when performances important, .

So, with that we come to the end of this course. And I have taken you through a very

physical implementation, . I would like to stress here that what I discussed in this course

is not the only way that C programs can be translated to assembly language, .

(Refer Slide Time: 17:35)

So, if you go look at the this compiler explorer here,  you have a whole lot of you know

you know arm 64 you know let us look at you know something simpler with x, . There

some problem with this tool, right now, . But, you see here that there are a whole lot of

assembler and compiler options. And if you look at the compiler output from each of

these compilers it might be a little different, right, but the heart of what I have thought

here is still  applicable even to those compilers and that compiled output therefore,  it

should be possible, if you understand the instruction set of that microprocessor it should

be very easy for you to understand what is going on, . 

The idea of allocating local variable space, pushing parameters on to stack, storing EBP

on stack, all of this will be common will be done in some way or the other. It need not be



done exactly in the order that was mentioned here in msvc, . ah So, with that I hope as a

student you can now go ahead and use this compiler explorer tool and also the material

that I have taught, in this course in order to explore compilers more easily and I hope the

compiler output does not intimidate students anymore.

(Refer Slide Time: 19:13)

Thank you. 


