
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 18

Welcome back to this course on C Programming and Assembly language. We are in

module 4 and in the last couple of lectures we looked at implementing a function like

printf that handled one variable number of arguments and two variable kinds of data

types as well as function parameters to which are passed to that function. So now,

moving on with our analysis of because of the assembly translation that happens in the

certain way that we have studied that till module 3, what is the impact on the high levels

programming language .

(Refer Slide Time: 00:49)

So, in that regard in this lecture we are going to discuss the following recursion versus

loops. So, anyone who is worked with C programming or C plus plus till now would

have use recursion at some point or the other. And, recursion is programming concept

which is very used; is a very useful tool because, it just allows us to think of the problem

in a very hierarchical manner. And, all you have to do is call the function same function

again and again with fewer and fewer arguments as we go along right and the only thing

is to ensure that you have one exit criterion so, that you do not go into an infinite loop .

So, let us look at simple example first of all of what recursion and is and how the same

thing could be implemented in a loop.

So, let us look at implementing a factorial function. So, what is this let us say for

example, I want to evaluate m equals N factorial . So, if I were to implement this using a

loop then this is how it would happen int fact of int N and I would say int answer equals

to 1. I create other loop variable i and simply say for i equal to 1, i less than or equal to N

i plus plus and answer into equals i and then return answer .

On other hand if I able to implement the same concept using recursion then I would

simply do the following, I would say m is equal to N into N minus 1 factorial. So, all I

have to do is int fact underscore recursion of int N and what we are going to do is if or let

us just go ahead and implement the factorial as it is first. We will just say that return N

into fact underscore recursion of N minus 1; of course, the problem here is if you start

with a positive integer then at some point you will hit 0.

And then you will hit minus 1 minus 2 and you will go on and on and on, there is no end

to this recursion here. So therefore, you have to give us stopping criterion and that is

very obvious if N is equal to is equal to 1 , then we say return 1 else return N into fact of

N minus 1 . So, this is not a very complex program. So, let us go ahead and look at

amongst these two implementations which one is bound to be faster especially for large

numbers like large N. So, let us take the recursion example first of all .

(Refer Slide Time: 04:51)

And I am going to translate this to its assembly equivalent . So, I will say int fact

underscore recursion of int N and I will say if N equal to equal to 1 return 1 else return N

into fact underscore recursion of N minus 1 . And, instead of doing and unoptimized

assembly translation I am going to go ahead and implement this directly in assembly

language . So, let us translate this to the assembly output right OBJECT CODE . So, first

of all the bracket here would get translated to the prologue .

And what is the prologue? It is first PUSH EBP and then MOV my ESP whatever the

ESP value is MOV that into EBP and then subtract ESP comma some constant , let us

call it 0 x 4 0. Now, this is my prologue, then I go ahead and implement this particular

functionality . How will this code get translated, remember I am not doing a line by line

translation I am implementing this directly in assembly now . So, what do I have to do? I

have to first take the value of N which let us say is contents of EBP plus 4 right or EBP

plus 8.

So, what do I do? I am simply going to say MOV into EBX ok, contents of EBP plus 8 .

And my why 8? Because, N is stored in EBP plus 8 , N is going to be contents of EBP

plus 8. So, I am simply getting the value of N into my BX register then I am going to

subtract or I will just decrement, I do not know N have to subtract I will decrement EBX.

In the process if EBX were 1 and I decremented it and then it set the 0 flag and I will say

jump on 0 to RETURN underscore 1, RETURN underscore 1 is a label.

So, I will put that somewhere down here , RETURN underscore 1 . What do I have to do

in this place? All I have to do is to simply MOV EAX because I if I have to return the

value 1 from the function I have to load EAX with the value 1 and simply say RETURN.

So, why do not we go ahead and initialize our EAX here comma 1 . So, this is help INIT

EAX equal to 1, basically I am saying the return value is initialized to 1 already. So, if I

want to come here I am just going to say RET because, when I come here EAX has

already has a value 1 INIT .

Now, suppose the operation of decrementing EBX by 1 did not result in 0 and let us

assume that only a positive number is being passed to this function , we are not going to

check for that condition here. Then it means that I need to implement the other part

which is basically this portion here , now this portion will translate to a call as shown

here . So, what is that I need to simply multiply the value of N with a call to the same

function with an argument N minus 1 . So therefore, what do I do, already my EBX

should have the value N minus 1.

So, if I just say PUSH EBX this should do because, N minus it already has the value of

N minus 1 right. This is basically PASSING N minus 1 argument and then I will say

CALL fact underscore recursion . So, let me do one thing, let me move this guy a little

below here this RETURN 1 I will move here and this label is called RETURN

underscore 1 . So, I am just going to call fact underscore recursion here and when I

return from this function EAX should have the return value. And therefore, all I need to

do is to multiply this EAX with the value of N .

So, what do I do? I simply will maybe yeah I will just MOV ECX comma N or I will

say EBP plus 8 and then I am going to say i MUL of ECX. So, what is this doing? It is

essentially loading ECX is getting the value of N here and this step is simply saying

EAX is N * fact of N minus 1. So, this is the optimized assembly output of this particular

recursion call .

(Refer Slide Time: 12:35)

Now, on the other hand if you go ahead and look at the implementation of the factorial

function for loop right, it is the C implementation is shown on the left right what I wrote

earlier. And, if you look at the assembly translation it is not very different.

(Refer Slide Time: 12:53)

So, this is again our you know the prologue , then this is just initializing some variables

and then I have a couple of MOV’s and I am doing a jump and I am doing a multiply and

so on. So, if you look at the assembly output of this loop implementation, it is not very

different from what we had in our recursion call . You have a compare, you have a jump

and then you are, you know doing some multiplications and so on. However, the

difference lies in the number of instructions that get executed eventually and this will

become evident when we look at the stack more closely . So, let us look at the picture of

the stack when I go ahead and call this function in the main.

(Refer Slide Time: 13:43)

I am going to say fact underscore recursion of let me call 3. So, if I look at the picture of

the stack here, just look at the number of operations that are involved when we are

implementing a function using recursion. So, if I want to call fact underscore rec of 3

right, this will simply translate to push 3 CALL fact underscore rec of 3 . No there is no

of 3, it is just calling the function and after I returned here let us say I have a variable N

equal to . So, I will say int n, then I will simply have to out here after I return from the

function I will MOV into N the value of EAX, this is the assembly translation .

So, if you look at this the value 3 gets push on to stack and then you are calling fact

underscore recursion and this is my return address, let me assign a variable a label here.

So, this return address will get pushed onto stack when you implement the call fact

underscore recursion when you call this function, this particular return address gets

pushed onto stack . And, then you go into the implementation of the fact underscore

recursion, as we saw there is a prologue that gets executed . So, the EBP of main will get

pushed onto stack. Then what am I going to do? I want to move my EBP move my EBP

to where ESP was .

So, my EBP will point here now , then I am going to subtract some local variable space,

this will be my ESP . This is the first call of fact underscore recursion, now you check if

the value of N is 1 well it isn’t. So, then I am going to call the function again . So, and I

am going to call the function with the argument 2 this time . So, I am going to push on to

stack the argument 2 and when you come here you will have the return address of

factorial function that is defined there . So, if you look at this guy its essentially what we

are doing is we are implementing this particular call now .

(Refer Slide Time: 17:13)

So, this will be my return address fact, this is the address it has to return to after finishing

the call . So, that will get pushed onto stack here , then again my EBP of FACT

underscore recursion for the first call will get pushed onto stack EBP FACT I will just

say first call , that will get pushed on to stack . And, then you are going to move my EBP

into this particular point here right and then ESP will again get move offset here

somewhere. Now, again you come into this function and then you check if the value of N

that has been passed to this function.

Now, what is the value of N? It is this value 2, you check if that is 1 well that is not 1 and

therefore, you again decrement this value and then call the recursive function again with

the value 1 this time. So, what do you do? You again push on to stack so, this is my

thing, I am going to push on to stack the value 1 and again I am going to call it with the

particular return address. And, then I am now going to again move my push on stack this

EBP FACT 2 . And, then I am going to repeat this process again and again of course, this

time the argument that has been passed to this factorial function is 1.

And therefore, I will simply do a return of 1 which means EAX will get loaded with 1

and then I will execute the epilogue. By the way in the previous case here , if you look at

this page here what I am not shown is the implementation of the epilogue. What is the

epilogue? It is basically simply going to undo these operations before I return. So, out

here I have to execute the epilogue and then do a return without undoing the prologue I

cannot get out of the function. And therefore, the label RETURN underscore 1 has to

point to the epilogue. And what is the epilogue? It is nothing, but ADD ESP comma 0 x

4 0 and then POP EBP and then the return instruction will happen accordingly .

So now, you come here and then you see that 1 the argument N is equal to 1 and

therefore, I just need to do a return of 1. So, you will move into EAX the value of 1 and

then you will execute the epilogue. And, then come back to this particular stack here

right, you will return from here, come here then return from there come here. So, what

we say is ultimately the operation that has to be performed is a very simple

multiplication . But, in order to do this single instruction of iMUL with another register,

what we are in turn doing is executing the prologue and epilogue for every call of this

function . So, conclusion is the prologue and epilogue is an overhead for recursion.

So, on the other hand if you look at the loop implementation, it is actually very straight

forward because we are doing just what is necessary. In the sense we are multiplying an

accumulating this product over the loop and we are not having to call any function in

this process . So therefore, there is no prologue epilogue overhead when we implement

the same function in a loop . So, and remember the prologue and epilogue is not a very

simple operation because, all of these are memory operations. They involve the stack ,

you have to push the EBP on to stack then you have to subtract the ESP with some value

which is not too bad .

Then you are during the call you have to push the return address on to stack, then you

have to pass parameters again ; each parameter that I am passing has to be done through

a particular push. so, effectively apart from the prologue and the epilogue there is also a

parameter pushing . So, prologue and epilogue I will also add parameter pushing,

prologue yeah parameter pushing, prologue and epilogue is an overhead for recursion

which is not in there in loops. And therefore, it is a common practice to take a program

that has been implemented using recursion and convert it to a loop, if performance is

extremely critical .

So, these are some implications that we have at an assembly level and we are able to

appreciate them very well because, we understand exactly what happens at the lowest

level in machine language . So, in the next lecture we will look at more such examples of

speeding up programs or performance analysis of certain assembly implementations for

certain special functions.

(Refer Slide Time: 24:33)

