C Programming and Assembly language
Prof. Janakiraman Viraraghavan
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 16

So, welcome back to this course on C Programming and Assembly language. In the last
module we looked at how to compile a C program and how to translate local variables
into you know EBP minus some offset, how to translate function parameters to EBP plus
offset and so on . In this module, we will use that information that we have learnt in
module 3. And look at the impact of certain corner cases in C programming . And we

will also look at some special functions like print f and so on.

(Refer Slide Time: 00:49)

'] Nate1 - Windows Journal] |
Fe Edt Yoew fut Acioss ook Help
ke P 0% Lrl-@-5
BEENEEEN §FOERE -

C Troctarwinig Ane Aurensit Laveunge

Tasiwg Migumenrs Ta B FuweTiod

Fumetiond B Mk %, ek) a

1) Passwe Fougr Mauments = (ormien ERese, s

g - Mote = = GMfILEE WARNWG, gopa

it fn (e, ma) ma () :

{ i &t % .25 (5mer)
1> [esp+e] fn (%) * — Tusw [esr-4]
3'5 [es+12]) CaLL Fn,
cehwn (mg};

J
RN ¢ G 0 Py T XX
So, in this lecture I would like to discuss the following I want to look at passing
arguments to a function . So, this is a precursor to studying what we have to do in print
f. So, let us look at 2 cases specifically here . So, first is we have a function Fn, which
takes some set number of arguments we have a so, let us say then the function Fn, which

takes let us say two arguments int X and inty .

So, what I want to study is I want to see what happens, when I invoke this function with

fewer arguments and when I invoke this function with more number of arguments, then

what has been defined . So, case one is passing fewer arguments . And case 2 is more

arguments. So, let us actually go back and look at our compiler explorer tool .

(Refer Slide Time: 02:33)

+ -oEl
& C i ipigodboton 40
{i" COMPILER 2 [;
\=; EXPLORER Listen to tha 3 podcast
o
Cunratl X VIR 1) 1 wEn o6 s W19 MO
A" B+ - a8 mwve VR4 NNE) * | @ ot »| A® Owpines
yoe yo ode hare, O = Ilun‘!c.l
3 dnt Anint 3, it y) A Copllir retarsed: #
[Buo B Bua BY D E
return y)
} e Wiibranes = +Addnew_= 0 Add toal_*

Y |
int madn() N LR
{

int wed, yui, 7a2;
L
1

[|
0 i the s cockos policy Compiler Explorer uses cookies and oither related techs 1o serve you

And understand what happens here. So, so, we have a function fn which takes two
arguments x and y and let us say it just returns x plus y the function can actually do

anything is this just a dummy function . The main focus is the arguments x and y here.

Now, in main what I am doing is I have 3 variables x y and z initialize to 0, 1 and 2
respectively. So, normally I would invoke this function fn as fn of say x and y . So, this
is the right way to do it and as you can see there are no warnings or no errors on the right
hand side here and the program has got compiled to it is assembly output appropriately .

Now, the question is if [remove this y, then what happens.

(Refer Slide Time: 03:27)

& Compie Explover %+ -sEl
e ¢ i Mipspodbolion & 8
S EE#.Q#EI%] e Listen to the Cpp.chat podast * |
Cruna ¥l X [86 e . 1 (WANE) (ko #1, Compler) C X = i o e 10 84 (N X
A B +- L T A8 mive vIRT4ONNE) T @ Campiler optic Z| A= Oweap s
1 Type your code here, or load an suaepl S A (LT R
3 ink nfint 1, dnt y) enemrctr(30): #rror 1198 “Pn': too few arguments for o
. Oungin o 2| Bt B Oye Bl Comiler raturead: 2
4 raturn (x5y);
5) Blibanes® dAdinew.™ QfAddtool *
1 tempilation failed -
int madn()
N
int xed, yui, 202;
ozl 1
u §

@ Bow b6 meve w15 WHE) | v
10 R e e e policy Compiler Explorer wses cookles and cther related techs 1o senve you
2 3 e m gy '

So, clearly remember that here I am dealing with a C program , this is not C plus plus
this is a pure C program. So, it is essentially saying that fn two few arguments for call
right, which is understandable because the function fn has been defined to take 2
variables x and y as arguments. So, let us note this down, if you pass your arguments,
then what has been defined this will give a compiler error. Now, on the other hand if |

just call it as f of x comma y comma z , which means I am passing 3 variables to it .

(Refer Slide Time: 04:19)

Py m e - osER
L © & hpsgodbolton & 8
= COMPILER :]
= EXPLORER il Lt Lstento the Cpp.chat podeast « |
Cxaman X o 86 mc WY W (W) (cor i1, Compler 11 C X) 1 B 1 TN X a
A" B #- [+ - dEmwevILIAONNE) * @ | Compiercetic | = | AT OWepines
Type your code hare, or 1088 6N enasp = aximpla. ¢
3 dne fnfint 1, dnt y) A cooprcer(30): waraing CHOT0: “fn': £oo many actusl paramel
Lo Ouon Bow Swer B By Oy S Compller refureed: §
1 return (xey);
5§ Wlibrares* +Addnew_* 0§ Add tool_*
1 a8 =1
int malni) L LR H
v A
it e, yui, za;
ol g, 1
} 1 PR _is[etn]
1 _yS[ese)
i
e
e, e
op, 11
1 mov DWORD PTR etfabal. 8
@ Bou 06 et w10 WOHE] | - ot 1200

stae policy ‘Compllar Explorer ses cookies and other related techs 1o serve you
C miah i

Then, what happened is that, I see that there is a warning fn too many actual
parameters . There is just a warning here, but the program still gets compiled to it is
appropriate output without any problem . So, if we instead passed more arguments than
what has been defined, you would only you would get a compiler warning. The point is
whether it is a warning or an error is up to how the person wanted to implement a

compiler it really does not matter s.

So, by the way this is not you know restricted only to msvc you could go and try your

hand at compiling this even with GCC ..

(Refer Slide Time: 05:25)

[¢ odtuoeg & @ i
.E EX\PLOIIIEIi % d Listen to the t podeast
At B 4 ¢ . D00 g k)

oy code
int fafint x, int y)

i [R = T
wyl;
b Blbases= + e
int madn()
{ Compil d: 1
int xod, yui, 202;
#n{s}; (Y |
]
cn 6 e k) | &
8 R the rovm conie policy. Compllar Explorar uses cookius and othar related techs 1o sene you

CECEEIGEE © I

And so, it turns out that GCC gives an error too many arguments to fn s and GCC of
course, if you call it with fewer arguments will also give you the error saying two few
arguments to function fn . So, the point is whether it is an error or a warning is actually
up to the implementation of the compiler. Now, if you pass fewer arguments then what
has been defined, then all compilers will definitely give you an error , but if you pass

more arguments than needed right like this x, y and z.

(Refer Slide Time: 06:05)

& Compilr Explones X 4 - sEl
& ¢ i Mipspodbolon &+ 8
= M 1

= EEPLQI%EI% Listen to the Cpp.chat podcast « |

Cxua il X B0l o runk) (§er 1 Comiler §1)C X T e g k) X
A B+ c v weagetn) v | @ | Compier opt T| A= OWaplnes

FT Type your code hare, or load an suaep) : T ewamrcast In function ‘main’;
1 dnk falint 3, det y)] A cuomrceri10:5 errors too many argumante ts functicn fn

» Ot B Bk

return (xsy);

B By Oy Bl 0| finy

5) Wlibranes® 4 Addnew_* DfAd tool* mrcaridib mater declared hare
1 ttemsilation failad 2 | int fnfint x, int y)
7 int madng) 1 ¥
 { Compller raturrad: 1
§ it wod, yui, al;
ol v, 2k 1
u j
@ Bow Bl g (k] | oo

10 R the e cocke policy Compiler Explorer wses cookles and cther related techs 1o senve you
2 3 c oy i

Then, it is the choice of whether to throw a warning or an error is compiler dependent .
And, that is what we are going to analyse? And see what the impact of passing this extra

arguments is at an assembly language level .

(Refer Slide Time: 06:21)

Fy e =)+ . oEE
L C & hipsigodboltong o @
s %E#.EIEEI% Listen to the Cpp.chat podcast
Cruman X 00 M9 ¥ .10 [WINE] (Riiter 1, Comptar 1) € X 15 185, 10 190N K
A" B *- € - xi8 myve vIOIOWINE) » | @ | Compiler cgtic | = | AT DWep bnes
1 Type your code hard, oF 1oad in Evasp . T wumpla
3 dnt fofiet a, dnt y) A cuouronr(10): warning CHIZ0: “fn'c teo many sctusl paramel
& Onow Bue & Bt By Ous S Comiler raturned: 8 X
1 Feturn (xey);
5 ¥ Wlibrares* +Addnew_* 0§ Add tool_*
1 a8 o
7 int madni) 2 yisn

int e, yu1, 2e2;

.},...‘.H‘.‘- Huihi 1

53, ap
ap, 12
ok FTH

e o rrm—
10 R he e cooe policy Compiller Explorer uses cookles and cther related techs to senve you
2 3 cC mign '

eilsbal. &
WHE] | - bosom iz

So, if you look at msvc we are back to msve 19.10 version here. And, this only throws a
warning if you pass more number of arguments to it. So, the question is now what
happens, when I pass more number of arguments then what has been defined . So, let us

look at our function Fn int Fn of int x comma int y . Now, we already know that the

arguments are passed pushed onto stack before calling a function. So, therefore, both x

and y will be accessed as contents of EBP plus something at EBP plus § .

So, x will essentially be contents of EBP plus 8 and y will be contents of EBP plus 12 if
it is a C program , if it is a C plus plus program then the offset will be slightly more as
discussed earlier. Now, in my main I am going to call this function in two different ways.
So, the first way is case one I am going to only call it with x , I am saying int x, y and z .
So, how does this particular function call get translated to assembly. So, you say push x

which is EBP contents of EBP minus 4 and then you are going to say call Fn.

So, if you look at this particular stack what happens is you have the local variables of
main . This is local variables of main . Then you are pushing EBP minus 4 onto stack
contents of EBP minus 4, which is basically the local variable x and then are calling the
function. So, what happens is there is a return address that gets pushed onto stack . And
then the you enter the function Fn where as usual you push EBP to stack and you know

all those prologue happens appropriately .

So, they are this is EBP of main . And then this is my local variable space of Fn. Now, if
you look at this particular and by the way this is the stack. So, if you look at this
particular implementation and let us assume that we are able to translate this program to
assembly language without any compiler error . Then, what is going to happen is in the
function Fn you are going to access these two locations EBP plus 8, which is basically
this guy right. EBP plus 8 because when I enter the function Fn remember that my EBP

will be pointing here .

Then in the prologue we would we would have move the EBP to 0.2 ESP before
allocating local variable space . So, my EBP is here and therefore, EBP plus 8 is
basically this location . Now, EBP plus 12 is also going to get accessed in this function,
because remember that the function that we implemented out here is return x plus y . So,

both x and y will get accessed and y is nothing, but EBP plus 12.

So, what is happening is EBP plus 12 is this particular location,, which is some garbage
value because we have not really even initialized it . So, some random value from main
is getting accessed in this function Fn, if you pass fewer arguments than what has been

defined in the function Fn . Now, on the other hand let us look at the second case .

(Refer Slide Time: 11:43)

'} Nate1 - Windaws Journal - sl

Fie Edt Yoow oot fckons ook Hep
Jdkw P 0%e gl PR R
ANEEEEEN s ERE h.d

Md.«(]'

1 i LA
n {‘MJ,Z}: — Puy 2 EL7-nme
Fus cT-hD
fuid = 7/'-7_—2"L {/{_
Fn® ChLL Fa pl
t5 (emed) Z
3 [est412)
Lot b
=

n -

(a5 LhcC ais
Now, let us draw the stack picture for the second case where in main, we are now
passing Fn of x comma y comma z and this is int X comma y comma z . So, how does
this get translated to assembly language it is push z let us not worry about EBP plus what
you know for the local variable here push y, push x and then call function. So, let us now
redraw the stack picture out here as well . So, again when I have the local variable space
. And so, what do I do I first push z onto stack , then I push y onto stack and then I push

X onto stack .

And then of course, I am going to do a call so, the return address gets pushed here. And,
once I enter the function Fn the EBP of main will also get stored here . So, after all this
EBP will point here . And this is my ESP local variable space for main has been

allocated, local variable for main. So, now, let us look at what happens in the function Fn

So, the function Fn is simply going to access only 2 locations . In Fn x is contents of
EBP plus 8 and y is contents of EBP plus 12 . So, EBP plus 8 is this particular location .
And EBP plus 12 is this particular location. So, what has happened is we have pushed an
additional variables z onto the stack, but that is really not being accessed in the function

Fn.

So, therefore, as far as Fn is considered there are 2 variable that have been passed to it

appropriately of course, it takes only the first 2 variables x and y when it is been called .

So, here it is only these 2 variables that it will eventually take z will just get ignored even

though it has been pushed onto the stack .

So, now, what happens is after the function Fn is done , when we return and ; come back
to this function here, we do a stack cleanup . And if the caller is doing the stack cleanup ,
as is the case by default with underscore underscore C decl calling convention. Then
what will happen is this function call Fn will get translated to ADD ESP comma 12.
Whereas, if I did Fn of x alone which is basically the previous case here, if I did this

then this would get translated to add ESP comma 4.

Now, in both cases whether I passed fewer arguments or more number of arguments
stack cleanup is not a problem as long as the stack cleanup is happening in the collars
domain . So, which is the case by default and hence there is no problem, but in the case
when we pass fewer arguments then what is been defined, some garbage value gets

accessed.

And therefore, you will see that all compilers return an error and do not even allow you
to compile the program if you pass fewer arguments, but if you pass more number of
arguments there is nothing functionally wrong, the extra argument gets ignored right.

And therefore, nothing really happens as far as the function execution is considered.

And therefore, some compilers may choose to just give you a warning and not worry
about calling out the error at that point . So, at this point it is interesting to ask saying ok.
So, is this always true you mean whereas where if I pass more number of function
parameters to the function, then what is defined? Is it always true then the program can
get executed correctly while ignoring the extra parameters that have been passed, well
the answer is not you know is not it is not always true and I can show you where that will

fail.

(Refer Slide Time: 17:13)

& Comples Fuplone % 4 - E“
L3 C i hitps/igodbollong & 8
= EE#_Q#EE o Lisien to the Cpp.chai podsast + |
Cwwcn il K - NE) I 1, Comple 1) C X g 1w 6 e o1 BN X a
AT B +- [. BB vILIOOMNE) * | @ | Compiler ctic | = | AT OWeap ines
i [Type your code hare, o load an exaspl Ll a' (LT R
] int _‘H“‘.l #a(int LN int ¥l i 43 30): warning C4020: “fn': too many adtual paramel
X Qe BLE B Bliei BY DOye Sl Compiler ratornad: 0
] raturn (xsy);
5§ Blibares® +Adinew.™ OfAdd ool *
L D el
7 int madag) Y _feid P
(I 4 puth
int wed, yui, 201 1 -
L 1 L L =
noy r [
£l
et
faet Dod
|
3 I H
Jin
e d
5 maln X
puh e

L oy, #6p
" wig, 1
mor DWORD FTH _xf[ebg), #
1 ————— 3[ekc], |
¢ Wouwy e 1800 (E) | e

10 R e e ook policy Coempller Explorer uses cookles and othar related techs 1o serve you
2 3 e mjigla i

If for example, this is an underscore, underscore std call , fn of int x comma int y. And
then I pass 3 variables to it X y and z. Then, you see that this particular function fn gets
translated to these argument, which is push EBP you know the usual stuff and ultimately
there is ret 8 which happens. Why is this because this is a standard call where the

arguments are fixed ? And the stack cleanup is happening within the function fn .

(Refer Slide Time: 17:57)

& Compile Eplover o+ -oEl
& ¢ i Mipspodolion &+ 8
= EE#.E'#EE T Listen to the Cpp.chat podeast * |
Caadl X L 36 it T 10 [WINE (et #1. Comples 1) C X ol 08 o 10 500N K =
A" B +- [- w88 me VIRIOPNNE] T | @ | Compiler cotie | = | AT OWeap lnes
1 Type your code hare, or load an eusspl A wnampl. ¢
3 ink _ptécall faiint x, int y) snearcr (0] warning C4020; “fn': too many actusl parass
b Onoio B B Baed B Oye Bl Comiler returead: 0
1 raturn (xsy);
5§ Blibares® $Adinew.™ QfAdd ool *
z 1 Pk g
int maint) 1 Y e, B
' 18 s wp, 12
i mv CWOAD PTH _xifess), &
sy i) I » e T T
i} 1 L
-
puth
oy
push
me
puth
call
sor
e
e
et
ain B0
[l [K6 o 1500 E] | v 1

0 i the i ockse policy ‘Compiler Explorer wses cookles and other related techs 1o serve you
C mint :

So, if I now come here basically what has happened is I have 3 pushes happening on to

stack , push z push y push x and then a function call to Fn is happening .

(Refer Slide Time: 18:21)

'] Nate1 - Windows Journal]

e Et Yow ot fctons Tock oy
S 0% L@
EEEREEE ivanm -

ik __skdeolh Fn (ink, nt)

2 fat Conttsd\gns:
1) ChweT Pan Feweh ARds To AR,
isr@ 2) O Ta Pmr Mor = Toafy

IF STRE CLOW P HMPEMS
ouTsipE C CALLER)

mols () }) WWE To Ty Ewaer PR To Fn
{ F STRREK CLEM up HARPENS
Falt gi2) = vt F:
fuwH b
Pus %
el Fn

So, what happens is suppose Fn was an underscore underscore sorry std call of int
comma int . Then, the function would get translated to assembly and eventually it would
finish with RET 8. Why RET 8, this is tied to the fact that there are 2 integers, as
arguments . Now, here the function itself is doing the calling the stack cleanup . And
therefore, if this function gets called with either lesser or more number of arguments, the
compiler should flag an error necessarily, because the functionality will be in trouble

when we execute the program here .

So, here for example, if I had a main and I called this function as Fn of x comma, y
comma, z. Then, this would get translated to push z, push y, push x and call Fn. The add
ESP comma 12 will not happen here, because this is an underscore underscore std call
and the stack cleanup is happening through RET 8. So, therefore, in this case the extra

push that was done this particular push this start cleanup will not happen.

So, ESP instead of coming down by 12 after the function call Fn, it will come down only
by 8. And therefore, one push would have not been accounted for when the exit main.
And therefore, it will return to some random address after it completes main . So, with
that we can write down some important conclusions that we have derived from this

particular lecture .

So, cannot pass fewer ARGS to a function right. I will say it is to pass more args to a

function if stack cleanup happens, basically at the caller , but of course, if it is a std call

then stack cleanup is happening within the callee, then you cannot; pass more number of
arguments you have to pass exact number of arguments, exact args to function if stack

clean up happens inside Fn.

So, this conclusion that we have come to is very important when we go ahead and look at
the implementation of something like print f, where we have variable argument list, we
need to make sure that it is possible to pass more number of arguments than, what has
been defined . And yet have this program execute appropriately. And in the next lecture

we will look at the implementation of print f in detail.

(Refer Slide Time: 23:09)

Topics Covered

+ [Passing variable number of arguments to a function
* Passing fewer arguments than defined
* Passing more arguments than defined

