
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 15

 (Refer Slide Time: 00:11)

So, welcome back to this course on C Programming and Assembly language. We are in

module 3. In the last couple of lectures, we have discussed how to translate a given C

program into its assembly output .

(Refer Slide Time: 00:24)

In that regard we looked at a typical C function and we said that apart from the body of

the instruction, which is shown in the middle here, you needed to add a couple of

instructions in order to set up the context called the prologue and which basically was

you know pushing EBP, moving EBP to the correct context of the called function,

subtracting ESP comma N, which is basically allocating local variable space.

Then before you exit the function, you need to undo the exact same operations that we

did in the prologue, which is adding ESP comma N and bringing ESP back to its original

value. Then moving EBP back to its original context before that it had before it entered

this function . And RET N is was needed, so that apart from returning and going back to

the called calling function, we have to we had to clean the stack and undo the effect of

pushing the parameters.

(Refer Slide Time: 01:29)

In this regard we had discussed two different calling conventions, the underscore

underscore stdcall is the standard call which is a faster call than the other calling

convention and this is where the RET N instruction is executed. The necessary condition

is the function knows exactly, how many parameters and what the parameter sizes are.

For functions like printf, where the function parameters could be variable and is

determined only at runtime, then it is the calling function that knows how many

parameters are being passed on to stack or being pushed on to stack. And therefore, you

can undo this effect only in the calling function and not within the function itself. And

that undoing is implemented using the ADD ESP comma N instruction.

(Refer Slide Time: 02:23)

So, in this lecture what I want to look at is I want to look at the C plus plus functions. So,

C plus plus is a very powerful programming language and really its quite similar to C in

syntax and other things, but it offers a very powerful programming concept called object

oriented programming , so that is a programming paradigm by itself and we are not

going into any of those details, .

What I want to discuss in this lecture is at an assembly level, assembly implementation

level. If I compile a C plus plus program, do I need to add any extra instruction to my

prologue or epilogue that is the only thing that I want to focus on in this lecture, . So, let

us take a typical example which is basically class you know, cls test some test ; I am

going to say it has two member variables int a comma b ok. And then I am going to say

public let me do, int add of int add and I am going to do return a plus b , this is my class

definition.

So, clearly there is one member function here right and these are member variables. So,

if I look at a typical C function , how different is it from this. So, the primary difference

is that I am not passing any function parameters to this function add , but I am still able

to access the member variables a and b in this function. So, remember that this public,

private and protected and this inheritance and all these concepts are verified and

checked by the compiler or the pre-compiler, .

None of these actually has an effect at an assembly language level. So, does not mean

that, because this is a public function suppose instead of a public suppose this was

private , does not mean that this function cannot be accessed at assembly level, . All

these checks are done at compile time, but at an assembly level there is no check that is

enforced to make sure that you do not access this function there.

So, let us now look at the main implementation where I use an object of this class, I am

going to say main and I will say c l s test x . And I am going to do x dot add and maybe I

can do int z equals 0 and I will do z equal to x dot add . Let us assume that the

constructor of this class has initialized a and b to some reasonable values , so that we do

not get some junk when we do this addition operation .

So, now the key point is that when I do x dot add , x is an object that is sitting in the

stack of main. So, if you look at the picture of the stack here, I would have my stack

sitting like this and I have the object x, which basically has two variables a and b, this

together is my object x . Now, I am trying to call the function add .

So, if I look at the assembly translation of this particular function, then it will happen

exactly like how a normal C program would have been translated. For example, this does

not take any it does not take any parameters therefore; it will get translated simply to call

ADD . And of course, this function out here would get translated exactly in the same

way that we had discussed earlier ; where we do a push EBP and we do a MOV EBP

comma ESP and we do subtract ESP comma 0 X 4 0, some random number that will

ensure that we have enough local variable space, .

And then we go ahead and implement the body of this function , which is basically you

know whatever the instructions that are needed to do add a plus b , so this is instruction

for a plus b . And then I do my epilogue, the question is because this is a C plus plus

program and there is an object x, what I need to do now is to access the local variable x

which is sitting in main, when I am actually executing the function ADD .

So, if you look at this when you do the call of this function ADD , then obviously the

return address gets let me put that in blue gets pushed on to stack , this is return address .

And after that you know I will go ahead push my EBP on stack of MAIN right. Then I

am going to move my EBP to this point, . And my ESP then will get moved somewhere

up here. This is how my stack will look, when I call the function ADD.

Now, all I have to do is to ensure that when I am accessing the variables a and b, I do not

access them locally in my local variable space out here , this is my local variable space

of F n of ADD. I need to access the original object which is sitting in main, so somehow

I have to get access to this particular address and that is available through something

known as the this pointer .

So, the C plus plus you have something called the this, what is the this pointer; so in the

function add , actually these variables here will get translated to this arrow a plus this

arrow b , which is nothing but the pointer to the object x of itself and that is why it is

called the this pointer and then you refer to the variables a and b. So, therefore, when I

am dealing with a C plus plus program, I need to additionally pass the this pointer

whenever a function F n is called . A member function F n or a member function add is

called, I need to pass the this pointer somehow.

So, now the question is how do I pass the this pointer, well. One way is you could maybe

push it onto stack or you could pass it through a register , because unlike function

parameters that this pointer is just 1 in number, there is only 1 this pointer that I need to

pass to every function. So, therefore I can actually pass this through a register and ECX

is the register that is assigned for this job.

 So, this pointer is passed ECX. So, what happens is before I actually call this function

with call ADD , what you would do is you would get the address of x and load it into

ECX. So, let me move that here, so this would now you would MOV ECX comma

address of x , which by the way is just you know some EBP minus 4 or EBP minus 8;

where EBP is the value in main and not the value after going into the function ADD .

So, you are going to just pass this address of x into ECX and call the function ADD.

Now, when I enter the function ADD, I might want to use the register ECX for some

operations. Like for example, the string related operations or the c m p s b or something I

might want to use ECX to do these special operations and therefore, I have to free that

register ECX. And therefore, an extra operation that needs to be added to the prologue is

to PUSH ECX onto stack, before you start anything in this function .

So, ECX comes in with the this pointer that is pushed onto stack, then you do the

remaining prologue that has to be done for any C function and then proceed. So, what

happens is now apart from EBP, I am also pushing my this pointer on to stack before I

start my program. And therefore, function parameters will now get addressed not as EBP

plus 8 and EBP plus 12; it will start directly with EBP plus 12 . So, what is happening

here is in between I am pushing my ECX, which is this pointer.

And therefore, my EBP which is pointing here, can now refer to function parameters

only 3 into 4 bytes away. And therefore, the function parameters will now start as EBP

plus 12 and EBP plus 16 and so on , so that is the only change at an assembly level when

we deal with a C plus plus function as opposed to a C function.

(Refer Slide Time: 15:46)

And in fact, that is known as a this call. So, if you deal with g plus plus instead of gcc,

then every function will get translated to a this call and it behaves exactly like the cdecl

call, . What does behaving like a cdecl call mean, it means that the stack cleanup happens

outside right using the ADD ESP comma N instruction . The this pointer is passed in the

ECX register and it stores the this pointer in contents of EBP minus 4, which means the

first local variable in the function is actually the this pointer, which is on stack.

(Refer Slide Time: 16:32)

So, let us now go back to our original question that we started off with in module – 2 ,

we had a function void swap of int star x comma int star y . And the question we asked

was cant we do the following . We want to swap, so can we do this PUSH contents of x,

PUSH contents of y, POP contents of x and POP contents of y.

The question was could we have done this and we said, it was not possible so now we

will explain, why that was not possible . So, this clearly was not possible . So, instead

what we said was we had to add two other instructions, we will come to it . So, now let

us now that we know how the function parameters and local variables are translated to

assembly language. Let us look at what this actually means at an assembly language

level, x and y are function parameters to this function swap.

And therefore, this actually is PUSH contents of remember x itself is contents of EBP

plus you know maybe which is a this call it will be EBP plus 12 , this will be PUSH

contents of EBP plus 16, this will be POP EBP plus 12 and POP EBP plus 16. So, why is

this not possible, the answer is very evident from the assembly instructions that we have

here; we do not have an ability to do a double in direction of address. What we are

saying is get the contents pointed to by EBP plus 12 and then use that as an address and

push that onto stack. So, this is a double indirection which is not possible.

And therefore, we had to correct this by adding two instructions which was MOV x

MOV into EAX you know the value of x, MOV EBX the value of y and then we said we

will do PUSH contents of EAX , PUSH contents of EBX, POP contents of EAX and

POP contents of EBX. And this was indeed possible or is indeed possible, because we

have moved x and y into registers .

And of course, I can in fact write this as EBP plus 12 and this as EBP plus 16 . So, we

have translated this particular swapping operation using just a single indirect addressing

mode as opposed to the double indirect addressing mode that would have been

translated to if we had done push contents of x and contents of y, as shown on the left

hand side here.

 So, with that we conclude module 3 and in the next module we will look at some

optimized implementations of C programs. We will also look at why recursion is not a

great idea from a assembly point of view and from a performance point of view. And we

will also look at a few other special functions to wind up this course.

(Refer Slide Time: 21:19)

