
C Programming and Assembly language
Prof. Janakiraman Viraraghavan

Electrical Engineering Department
Indian Institute of Technology, Madras

Lecture - 01

So, welcome to this course on C Programming and Assembly language. So, at the outset

let me state that; lot of students do plenty of courses in C programming and other high

level languages. And also they do many courses on assembly language programming, on

various micro process and microcontrollers. What is really missing in the current

curriculum is a bridging gap between these two languages. That is to say students do not

have a physical understanding of how a C program or a high level language is actually

executed in a microprocessor. And people do not understand what exactly happens in

various segments of the memory, when a program is being executed.

The idea of this course is to bridge, this very gap. For example, when students are asked

where local variables are stored in C? The answer comes very quickly, that it is stored on

a stack. And then asked, what kind of scope do, variables in a function have, they call it

a local scope or a global scope unfortunately there is no understanding of, what

physically these things mean. In this course, we hope to address these issues.

(Refer Slide Time: 01:27)

So, the course objectives really is to ensure that, we are able to show to students, what

exactly happens when a C program is executed in the microprocessor by way of

animations and some simple examples.

(Refer Slide Time: 01:47)

Moving on to the learning objectives of this course, which by the way is what a student

should be able to do, on completing this course. The following are the learning

objectives, you should be able to explain how function calls are translated to assembly

language, explain how parameters are passed to function, explain what it means to say

that local variables are stored on stack, demonstrate how local variable space is allocated

by a compiler .

This is a week, you at least have to be able to show one way, in which this can be done.

Explain what it means to say local variables go out of scope after a function call, list out

the instructions that need to be executed before entering and before exiting a particular

function in C.

Then we will move on to be able to explain, what various calling conventions are in C

functions right, for example, you have a function which has a variable argument list, as

opposed to a fixed argument list, how do these functions differ in assembly language and

that is where calling conventions actually come in. Then you should be able to explain

simple difference between C and C++ at assembly level. C++ is a very powerful

programming language that offers object oriented programming.

But the key point to note is that at assembly level it is not very different from C. There is

very little change that you need to incorporate when you move from compiling a C

program to compiling a C++ program and we will demonstrate this by way of an

example again.

(Refer Slide Time: 03:23)

You should also be able to exploit certain hardware instructions to speed up C functions

and then you should also be able to explain why recursion is not a great idea for

performance. Typically you will see that, recursion though is a very powerful way of

programming and conceptualizing an idea, it is not necessarily the most efficient way of

coding or programming it in a microprocessor.

(Refer Slide Time: 03:53)

We will look at the reasons for that in this course. So, the references and prerequisites ,

so, there like I said there are plenty of courses that students do in C programming,

students do in microprocessor assembly language programming. But for C programming

you can typically refer any book, but of course, there is nothing better than the Bible

called the C programming language by Kernighan and Ritchie, the second addition. As

far as a microprocessor assembly language goes, what I am focusing on this course can

be explained with any microprocessor.

And it may be slightly different from microprocessor to microprocessor, depending on

the assembly instructions that are available. But unless, we actually freeze on a particular

architecture or on a particular assembly language, it is not going to be possible to get a

physical understanding of what actually happens at the lowest level. For this reason, I

decided to adopt the Intel microprocessors architecture and programming for this course.

The reason is when you compile a program on a normal desktop, which is based on an

Intel microprocessor, which is mostly the case, you will see that the assembly

instructions are exactly the, what I am referring to in this course.

So, for the Intel microprocessor architecture and programming there is again no better

book then very Barry Brey’s book on Intel microprocessors architecture and

programming. So, I referred the second edition, but there is nothing different even if you

refer the 8th edition, which is the latest book available. As far as prerequisites go , I

expect that students are already comfortable with C programming .

So, I will not be going into any details of C programming here. For example, what a

function is, what an array is, what variables are, I am not going to go into any of those

details. I am assuming that you already know, how to program, simple programs in the

language C. However, I will focus on something called inline assembly which again can

be put in any high level language. But I will look at it in the context of C programming.

For assembly language programming, I am assuming that students have worked on

assembly language programming of some microprocessor, be it arm or you know the any

other microprocessor.

So, I just expect familiarity with assembly type of instructions. I am not assuming that

you know the Intel architecture or the Intel assembly instruction set already. So, I will

spend some time describing these instructions. So, that you get familiarity, but I am not

going to go into gory details of how these instructions are you know executed or you

know the need for these instructions. I am not going to go into any such detail. I am

going to give only some working familiarity with the assembly language of the Intel

architecture.

(Refer Slide Time: 06:49)

.

So, the agenda for this course is, I have broken this four week course into four modules.

Module 1 which will be covered in the first week, will be a brief introduction to the 8086

processor architecture and then describing commonly used assembly instructions right.

Here when I say commonly used assembly instructions, I mean the assembly instructions

that you will typically encounter when you translate a C program into assembly

language. There are numerous other instructions that are, there in the x 8 6 architecture

of Intel , which can be used for hardware programming and so, many other purposes.

But that is not the focus of this course. I will be only dealing with a subset of the Intel x

8 6 instructions, that apply to C programming. Then we will look at the use of stack and

related instructions. And finally, I will look at the call and return instructions in some

detail. Again all these instructions are typically used in any microprocessor, the idea is to

just get you in, to the Intel style of coding these instructions. In the second module which

is in week 2, I will give an introduction to C programming and inline assembly.

So, Inline assembly is a way in which we can actually intersperse some assembly

instructions within a C program. So, you have the syntax of a C program and there is a

certain way in which, I can actually switch from a high level programming language into

a low level programming language, like assembly language, do certain instructions and

then come back to my high level programming language again. Then, I look at the data

types and their sizes which are typically used in C and relate them to, you know what we

do in a microprocessor. Then I look at some specific examples, of inline assembly. And

these examples have been chosen specifically to drive home certain advantages, which

we will see in later modules.

So, I look at ALU operations, the string length operation, multiplication using repeated

addition, swapping two variables in C, this is a very interesting exercise that all students

do in C programming, where you know by using a temporary variable, without using a

temporary variable and so on right. So, we look at that example. Then we will look at

swapping two variables using inline assembly language. Later we will move on to a

function to swap two variables in C right and we will also look at swapping two

variables using inline assembly in C.

So, they have various flavors of these swapping functions that, I would like to look at

and each example will drive home a certain advantage and a certain concept, which we

will cover and come to at a later point in the week 3.

(Refer Slide Time: 09:45)

.

Module 3 which we will cover in week 3 is essentially the main focus of this course. The

idea is to take a given C program and simply compile that into low level assembly

language.

So, the idea of introducing inline assembly is that, at least the basic instructions which

are the arithmetic and logical related instructions can be translated pretty trivially, as we

will see. However to actually translate the entire function needs certain knowledge of

what exactly happens and there is something called a prologue and epilogue that has to

be executed for each function. A prologue is a set of instructions that are executed,

before you enter into a function and an epilogue is a set of instructions that are executed

before you exit that function.

So, the idea is to drive home the need for a prologue and an epilogue and to even derive

what instructions actually need to be there, by way of an example and animation. In the

animation, I will ; give you an exact idea of what happens at assembly language level in

the code segment, in the data segment, in the stack segment, all simultaneously, right.

And with those examples, we will see what happens if this prologue and epilogue were

not there., what is the exact need for these instructions, .

So, then I will move to the calling conventions as, I briefly mentioned earlier and then

we will look at how variables are passed and accessed. So, these are the key points that

we will touch on in week 3. Module 4 which is the final module of this course is where

we are actually going to compare C and C++ at assembly language level, right.

So, we will take an example of a structure in C and a class in C++ and then we will find

that there is actually not much of difference other than the, you know how in C plus plus

you have certain restricted access, while in C you do not, right. So, what do these things

actually mean at assembly language level is, the going to be the focus of this first

discussion in module 4. Then we will look at optimizing certain C functions by

exploiting hardware loops right.

So, for example, memcpy, string length and some maybe a few other instructions or

functions we will also look at, . The idea of discussing this, is to show you that it is not a

good idea to actually code, certain basic functions like string length. For example, using

loops and you know the regular style of coding that we do. You need to exploit certain

instructions that the hardware gives you in order to speed up this process and that is what

you will see in any library that is provided to you.

So, if you as well actually disassemble that code and look at the assembly

implementation of a string length function, the heart of the function will be this

hardware instruction, which is well used to exploit loops at a hardware level and not at a

software level. We will also discuss, why it is a good idea to sort of convert recursion

into software loops, people do this on a regular basis and we will look at, why that is the

case.

(Refer Slide Time: 13:23)

So, with that let us move into module 1, right. So, the idea here is to first give you a brief

introduction into the 8086 processor architecture, describe the commonly used assembly

instructions, use of stack and related instructions and then focus on the call and return

instruction. So, with that let us enter the world of microprocessor programming.

(Refer Slide Time: 13:49)

So, the microprocessor is actually very sophisticated chip that can do many things for us.

I am going to abstract out then necessary definition and the necessary details that we

need, in order to proceed with the learning objectives of this course. So, a

microprocessor can simply be defined as a black box that can do certain computations, .

So, we will call this mu P and this microprocessor talks to what is known as a random

access memory, .

So, a RAM is as we all know, is Random Access Memory. So, a microprocessor has

what is known as a data bus, right and the line here indicates that this could be more than

one bit it could typically be 8 bits, 16 bits, 32, 64, . And this data bus is actually going to

be bidirectional in nature which means that, microprocessor can send data to the

memory, or it can receive data from the memory.

So, this is my data. The microprocessor also has what is known as an address bus. This

again is a multi bit number, depending on the size of the memory and how much

memory it can access, it is that many bits will be assigned. Typically it is going to be 2

power N, if N is the number of address bits, then the number of locations that it can

logically address is 2 power N. So, the memory also has two other control signals called

the read and the write.

So, as far as we are concerned a memory is again a black box, which takes data and

addresses inputs and two control signals called read and write, right. So, the RD is read

and WR is write. So, the black box called memory here, if you issue a read command,

which means that you are going to actually make the read command go high for a short

while, and you present an address to it, than that particular location will be read out and

placed on the data bus, . Similarly if you assert the right command and you actually

present an address to the microprocessor, then this would simply write the data that is

available on the data bus, into that particular location in the memory .

So, that is all a memory is and that is all we care for in this course, . For example, a

memory could be an SRAM or a DRAM or various other kinds of memories are there

non-volatile, volatile, I am not going into all that. I am just going to call a memory as a

random access memory in this case, which has the features that I just described. So, the

other thing that we need to abstract out is what is known as a logical memory map. So,

what we want to look at is a Logical Memory Map.

(Refer Slide Time: 18:03)

So, what is a logical memory map? So, I have an address, which can be about N bits. So,

the address bits are a 0 to a N minus 1, and these could actually refer to 2 power N

locations. And in each location, I could write K bits of data. So, my data bus could be

about 0 to K-1, right. So, it has about K bits of info. So, the idea here is, we are trying to

separate out the physical memory implementation from a logical addressing

implementation.

So, by logical addressing, what I mean is that there are 2 power N locations and in each

location, I would say for example, I could say that we write 8 bits of information, for

example, this k could be like 8 bits . So, there are 2 power N locations, each 8 bits long,

this is the logical address which means that location 0 to 2 power N minus 1 each of it is,

actually going to be 8 bits in length.

So, this is my location 0, this is my location 2 power N- 1, right and each of this is going

to be 8 bits. This is called a logical memory map. This does not mean that, the physical

memory has an 8 bits data bus, connecting to the microprocessor, it could be 32 bits or it

could be 16 bits. For example, I could say that my physical map is only half of these

locations and each location I can write 16 bits, and this is half of this, this is my physical

memory. As far as the program is as concerned, you do not have to worry about the

physical memory arrangement, all you have to worry about is a logical memory map,

which basically says that, if you are given an address with N bits you can write or read 8

bits from that.

(Refer Slide Time: 21:49)

