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Lecture 8
Feature related issues

Welcome to this third lecture of the second week of this course on machine learning. This
lecture  will  focus  on  features  and  issues  related  to  features  as  you  may  already  have
understood in the earlier lectures, Feature engineering that means the way to decide on the
appropriate set of Features to characterize objects within the Data set is a crucial issue for
machine learning. So the idea here is to try to characterize the concept learning tasks, in terms
of the relevant Features, Feature vectors and what one can call the object or Feature space. So
the classical way of viewing a
scenario for a learning task is to define an appropriate set of Features, view each Data item in
this data set as a Feature vector consider the feature or Object space spanned by the features,
populate  the  feature  space  with  the  Feature  vectors  or  Data  items,  find  optimal  multi-
dimensional surfaces,
Hyperplanes in the object  space that circumscribe the extensions of all  the cost concepts
involved. The engineering of features is crucial for the complexity of the object space and as
a  consequence  also  crucial  for  the  complexity  of  their  learning  problem.  We  want  to
distinguish three basic cases
for Feature engineering : In Case 1 we have a reasonably well composed set of Features given
based on domain theoretic considerations. In Case 2 we have a huge set of possible Features
available,  but  these features  have to  somehow be reduced to a  manageable  size that  can
ensure an efficient learning process. The third case is that we have data items that are of non-
digital nature it could be images, it can be sound, it could be other forms of representation
and in that case the relevant features need to be extracted from the primary form of the data
items as a separate process, typically this need to be done in a case-to-case fashion depending
on the nature of the primary form and the character of the application. So now we will discuss
the first and third case shortly, and then
more or less focus on the second case for the rest of this lecture. So now I'm going to discuss
an example to illustrate the character of the first case and this example is fetched from a
systematic example introduced in this week, the zoo dataset. So the problem in this case is
neither a volume problem due to a large ungraspable set of possible features, because we talk
about a limited set of features neither it is a representation problem caused by data items in
non-digital form, because we
assume that we can define the features along we can have digital values of those features. So
then the question is what are the problems here so, so if you look at the two columns in this



example you can see the feature that is the original Features of the data set from the standard
repository fetch from the standard repository. In the second column you can see number of
features that are inferred from the conventional zoological taxonomy used to characterize or
classify animals. And the set of features indicated in the second column is derived more or
less exactly from the complex taxonomy ranging from animal down to a specific kind of
buffalo. So as you may see in two cases there is a correspondence, so the same the same
features occur, in other cases you can see that there are differences.  Obviously there is a
reason for differences because in the second column the taxonomy is the taxonomy for a
specific line in the animal taxonomy leading down to buffaloes and related animal and of
course the optimal set of features related to that line is necessarily not optimal for all kinds of
animals like fish and reptiles and birds and so on. But it's not a trivial thing to say whether the
left column is the optimal one for the problem at hand or something like the right column
may be more correct.  So the bottom line  here is  for this  kind of  case where we have a
reasonable amount features, for a reasonably well-known domain we still need domain based
sanity  check  of  the  features  in  such  a  case.  It's  also  very  important  that  we  have  a
terminological consistency here, that we use the same term it cannot be the case that we use
one term like in in in one of the columns here and another in the other and make a mis-
judgment with these are the same or different and so on. So the same characteristics need to
be referred to in the same way in in any proposal competing proposal for the correct feature
set this is more like common sense. But also it's very important that there is a clear feature
definition for every candidate feature, so for example we have a splendid example of that I
mean  in  in  the  first  column  in  the  bottom  we  have  something  like  cats  size  which  is
absolutely not self-evident  was it  means actually  looking at  the data set  cat's size means
actually that this kind of animal have the size of the cat for larger, so this is a Boolean feature
that'll be the very one if that kind of animal is considered being equal to or larger than a cat in
size. But it's just an example that just by ranking a symbol like cats size is not evident what it
means  so  homework  here  in  any  feature  engineering  task  is,  first  of  all  see  to  that  the
terminology is so crystal clear I don't know it was the same term for the same kind of feature,
and also that every feature is well defined, that's a starting point and still of course be many
other issues to consider at this point I just want to mention these few. So the third case is the
case where the data items of our data set are of heterogeneous and non-digital nature and we
need a separate pre-processing to go from the initial form and map that form into relevant
digital features. And this can be done in in several ways, so just look at the example here
there are four images, so either you can have a fully manual process where a person looks at
each image and infer a feature set for that image, so for the first the inference is that we talk
about birds, in the second image it is a fishes, in the third there are mammals and in the fourth
there are insects and when you go further there are so many birds of a certain size there are so
many parts of another size for the Fishes we can do the same, so we can do a manual analysis
of each image and from that image decide upon a description of that image in a digital form
in  terms  of  a  manually  produced  features.  The  other  extreme  is  that  we  have  a  totally
automated process where a computer  program a computer vision enabled program manages
these images and automatically  infer the most likely set of important feature characterizing
that image And that could be things in between, that could be automated but still need to be
some human intervention in this process of course in the end we want a description of these



images in something equivalent to the kind of feature set up we really looked at for the case
number one. For sure  every non digital  form of representation demands its own analysis
here, we cannot believe that we can use the same techniques for any form so for images we
need certain techniques for sound we need other technique and so on in order to enable some
degree of automation for this  kind of case.  So now we turn to case two, Dimensionality
reduction or Feature Reduction so in this case we have a large set of possible features and we
want to reduce them to a manageable size, so in most realistic  cases the amount of possibly
available features can be used to characterize data items is overwhelmingly large, in general
we want to reduce the number of considered features the ground for removing the specific
feature is, that it may be either redundant or an irrelevant and if so can be removed without
causing loss of information the goal is obtained is to obtain an adequate set of informative
relevant  and non-redundant features still  being able to describe the available  dataset.  The
underlying motivations  for dimensionality  reduction can be summarized  as follows: At 1
making models easier to interpret by humans, the smaller set of features is more easy to grasp
for a human when looking at them all.
Avoiding the curse of dimensionality and we will come back to what that could mean. Third
reducing the risk of overfitting and we will also go further into that and finally in general
shorting the computation times for learning processes. Naively you can say that the more
features we have to consider, the more costly the computation will be, so the term Curse of
dimensionality refers to various phenomena that arise when analyzing and organizing data in
high dimensional spaces, we talked about hundreds or thousands of dimensions problems that
do not occur in low dimensional settings such as the three dimensional physical space and
others. The term was coined initially by Richard E Bellman when he worked with problems
in Dynamic Optimization. The common theme of the problematic phenomena is that when
dimensionality increases the volume of the space increases so fast that available data perhaps
sparse. This sparsity is problematic for any method that requires statistical significance, as the
amount of data needed to support a result often grows exponentially with the dimensionality.
Also organizing and searching data often relies on detecting areas where objects from groups
with similar  properties unite,  however in high dimensional  cases all  objects  appear  to be
spares and is similar in many ways, which prevents efficient data organizations. So now we
turn to what is termed Overfitting vs. Underfitting. This case is being two of the phenomena
most frequently affected by wrong or inadequate selection of features. So Over-fitting is the
production of a model that corresponds to closely or to exactly to a particular data set and
may therefore fail to fit additional data or predict future observations reliably. Typically an
over-fitted model is a model that contains more features than can be justified by the data set
and by the existence of all these features the current set of data is to exactly fit it. In contrast
under-fitting occurs when a set of feature cannot adequately capture the available data set,
typically an under-fitted model is a model where some features that would normally appear in
a correctly specified model are missing, and as for a over-fitted case such a model will also
tend to  have  a  poor  predictive  performance.  So in  the  example  above,  you can  see  two
dimensional  examples  how it  could  look  like  but  as  you  understand  as  for  many  other
examples were given and the same can occur phenomena can occur in multi-dimensional
cases. So finally we turn to the two concepts of Feature Selection and Feature Attraction. The
concept  of  feature  selection  is  pretty  straightforward  by being the process  of  selecting  a



subset  of  relevant  features  from the  original  set  and discarding the  rest.  The  three  main
criteria for selection of a feature are: One, how informative is the feature, The second: how
relevant  is  the  feature  and  thirdly  is  the  feature  non-redundant.  Actually  relevance  and
redundancy are could be thought of as equivalent but not so because it may be so that two
relevant feature are so similar or overlapping that one can consider one of them as redundant.
I mean in general what we want to achieve is to have a few features as possible as long as we
can discriminate in a good way among more data items in the data set and the categories in
question. So features extraction is a little more complex it's rather the process, it's not the
process of selecting anything or throwing something away, it's rather the process of deriving
new features could either be as a simple combination of the original ones or it could be as a
more complex mapping from the original set to a new set. When we started to talk here about
always  reducing  the  number  of  features  but  actually  it  could  be  so  that  without  really
reducing the number,  one could create  a  set  of more suitable  features  that  simplifies  the
learning tasks so feature extraction in that way kind of more general because it captures all
kinds of mappings from one original set of features to a new one, given of course that the
new set is more useful for the learning task, so in both cases the learning touch is supposed to
be more tractable in the resulting feature space than in the original independently if you use a
selection procedure or use some extraction process. So this is the end of this lecture I want to
run summarize by saying that I hope now you understood that feature engineering is the key
ingredients in the area of machine learning, and that all the cases mentioned in this lecture are
relevant, both the case where you have non-digital data items that have to be transformed into
some digital  form with a discrete set of features also the case where you already have a
reasonable number of features but where they have to be judged in terms of domain relevance
and in the light of a domain theory, and thirdly when you have a huge set of discrete features
that  have  to  be reused in  order  to  be  more  optimal  for  the  performance  of  the  learning
algorithms. So by this I want to thank you for your attention the next lecture will be on the
topic of scenarios for concept learning so thanks and good bye.


