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 Welcome back to the lecture on convolutional networks, we will start to look with how a typical

convolutional neural network architecture looks like. And you see it here, so you can see you

have the input and this is this pixel variant of an image and after that follows a number of layers

that is defined here as convolution and Pooling. So essentially it's not pre specified how many

such levels you should have it could be one level, one convolution one pooling on convolution

pooling but it could so that's up to the design of the network and essentially it depends a little on

how complex the image is, how many objects, how many features because essentially if you

want to model many features and you have many levels of abstraction that were to capture we

need more levels. So we will go into the details shortly I just give you the broad picture now and

so after that and one can say that that phase is supposed to do the feature learning, so the idea is

that the system after this these faces have captured the relevant features that you can see in the

image. So then the next step the final step is given that the features are articulated then we want

to analyze this, one typical task is to classify the potential objects that can be there given the

feature map and that part is more or less like the traditionally Neural networks that we started to

look at in the beginning of the week and the only thing we need to do first typically is because

the output of these first phases is normally a multi-dimensional matrix but as you may remember

for a traditional artificial neural network then we normally want one feature vector. So actually

and typically there is a stage in between called flatten when we take the multi dimension matrix

and  create  one  dimensional  vector  and  then  based  on  that  vector  we  do  the  traditional

classification. So this is more or less the architecture.

So there are a few terms that are important here when we go deeper into this different phases. So

convolution  you  already  heard  you've  got  the  mathematical  background  there's  also  some

campaign called  Filter,  a lot  of people talk  about  Kernels.  I  prefer  personally filter  because

Kernel is used in so many fashions as you remember from earlier lectures is a little confusing

actually, there is a concept called Stride, there's a concept called Padding all that have to do very

much how you how you handled this convolution layer. If the concept of Feature map and of

course that's the map of features at gradually is built up and so on, but we will go through all

these concept and systematically  in the following slides.  So we will  start  with what is most

characteristic for convolutional Network, this is the convolution and Pooling phases and these



phases together one can characterize as the feature learning phase. The feature learning phase is a

network  consisting  an  arbitrary  number  of  pairs  of  convolution  and pooling  layers,  and the

number of rows of these pairs of layers are engineering decisions for typical problem settings but

in general later deeper levels handles more abstract or high-level features or patterns in analogy

with our assumed model of the functioning of the human visual cortex,  that also have these

layers that systematically looks at more complex features. Yeah so now we will focus on what

happened in one layer and we assume that functionality will be the same independently how

many this pairs of layers we add. So always for this kind of tasks is very important to look at

what we start with so here we assume we got images with a certain format in this RGB model, so

in this case we assume we have an example that are 32 times 32 pixels and they have a 3 pixel

depth to handle the colors shades. Let us now look at the convolution layer. A convolution layer

as typically many filters that are going to be processed on the input image right in parallel most

typically in sequence. Now we will look at what happens when we apply one filter to the input

image, and as you understand what we do now is an I was a slightly abstract equivalent of what

you we did when we did these small examples of convolution because essentially the idea that

the way to regard what happens is that we have like the only engine we have two functions we

have the input the whole input image which is one entity we have one we have a filter and we are

going to view the input image from the perspective of that filter and map that onto another array

so you can say that the resulting the output from this face is a new array which somehow should

be considered the convolution of the input array we look at and the filter. And it's the filter in a

way that reshapes in the same way as the J function in the mathematical function the J function

really rare reshapes F so here the filter reshapes the input and gives us the output. So and of

course in every of these steps one has to choose a particular filter and a few things to think about

them so first of all but to think about the size and obviously filter is a sub area so we have a

rectangular input area and a filter should be some subset of that and normally we talk about

filters of a limited size they could be 5 times 5, it could be 5 minus 3 times 3 and so on. And the

idea is that also in an analogy with how we calculated the mathematical convolution, we should

let actually this filter slide across in a systematic fashion and across the whole input array, and so

let us disregard the color dimension for a moment I mean they have course had to be handled but

they just shouldn't disturb the main process for the moment. So let's forget them and let's assume

that every pixel has one value a number. So when we slide the filter across the total input image



we take the dot product between each filter element and each corresponding element of the sub

area of the input array that we are at the moment and then we get a scalar out of that with a

number of the one number out of that. And as you understand when we move a filter around

there are so many positions the filter can be in and normally depending on the size of the filter

there are the size of the filter decides how many position can be normally those position are

fewer than that what we started from. So when we handled one position of the filter we calculate

the number and we put that number in the new output array, and then we let the filter slide we do

the same computation for that position, we put it in the output etc. So when we have done that

systematically for all positive positions of the sliding then we have a complete feature output

map. And the normal thing is that we have a stride which is low which it means that when we

slide we take one step or two steps or three steps or stridor one we just move this filter window

consecutively but we couldn't have a bigger step which means that we will go more rapidly but

the first ever then also fewer filter measurements which will also then in lower the number of

elements in the into the feature map. So just to summarize then, what we have is a filter and

that's kind of a measurement from a certain perspective we applied we create this output matrix

and the size array and the size of the output array depends of course on the size of the filter and

the number the size of the this slice actually. 

So let's  look at  another example maybe go through this because it's  I  think it's  important  to

understand this basic step because it's the heart of this method. So here is another example we

have a seven point seven array that gives us 49 elements, the filter is shown in the middle the

filter size is three and that is black and lines so now we move from the beginning we get rid of

the color schemes and the stride is one and this filter and this is a new thing which we didn't talk

about last slide, that of course there have to be a certain pattern in in the future because the

pattern in the feature this is the what defines the measurement we want to do. So in this case it's a

filter that is supposed to find diagonal patterns in the input image. So the output because of the

size of the filter and the stride in the same sense that in the earlier example we get a smaller

output array actually a 5 point 5 with 25 elements and here you can see I mean you can do it

yourselves  so  you  can  place  the  filter  in  such  a  position  and  then  you  make  a  paradise

multiplication do you will say that those modifications adds up to the figure four, so therefore

you get a four in out matrix. So this is what's going on and of course there are in a realistic

example the matrix would pixel is great and there are many many steps in this so it's always a



complex machine learning,  but I hope I've given you the picture now that the core mechanisms

here are pretty straightforward and not difficult to understand.

There is another concept that you hit when you read about this kind of systems and that's the

concept of padding so I can wonder what that means. I mean the principle very simple, so you

have a image input array and depending on you who you choose your filter size and how and the

stride length it can be so that you have difficulties in an appropriate way by the sliding a cover

all aspects because it may be so that you cannot make such slides that every element it's taken

into account. So one way then is to actually extend the image frame with some dummy elements

on the border. Of Couse this is not informative because it's just put there to get some space but if

you do that then you may counteract this is the state of the affair that you cannot really measure

every corner of the image. It's more of an engineering decision from case to case whether you

think this is important, if it's necessary, if it's beneficial and so on. So there is no clear, it's a

context-dependent choice and that's the concept of padding that's really augmenting the image

frame image with the neck strap frame for the reasons I gave you.

As I already told you in each convolution layer there may be many filters that mean them maybe

which means there are many kind of measurements you want to make on in parallel on this input

image and these are handled separately, so there's the same process for each filter and each filter

produce an output array and as you can see from the picture on the right what we then get when

we are finished we'll go in through the old sets of filter  it  weighs like a sandwich of output

arrays,  so  we  get  a  bigger  array  actually  in  the  end.  The  pooling  subsampling  layer  is  a

complimentary  step,  so  I  said  earlier  normally  the  convolution  step  is  always  followed  by

something step and the purpose of the pooling layer is to use the complexity of the array you

created. So because if you have many filters looking for many different kinds of features and that

will give you potentially a large array coming out from the convolution step and typically you

don't want to reduce that. There is an analogy here with what we discussed in an earlier week of

overfitting  because  if  when  we  talk  about  decision  tree  we  said  that  okay  if  decision  tree

becomes too complicated if you killed so too many nodes, too many branches it's more likely

that it will do overfitting on the data it's  going to test.  And it's the same here there is some

parallel here that you'll get a to complex array structure here it it's also a risk to get the similar

phenomenon. So the pooling layer operates on each feature Maps also as we said out from the



convolution step comes  portfolio or sandwich of these feature maps and then so in the pooling

layer you do the pooling operation on each feature map independently. Also here you use filters

but  for another  purpose somehow but  actually  you typically  also here define a  filter  with a

certain size and then you move that filter around on the surface of the array you have at hand and

then of course you need to define what kind of matching should take place between that filter

and some sub-region of the area you're going to study and one very much used approach is to

take just pick the biggest value. So out of the out of the big array you apply the filter window and

then for the sub area you cover you pick that pixel with a with a largest figure and that figure is

what you take out as the result  from that  measurement  and as in the same way as did with

convolution  you move this  filter  around with a  certain  stride  also so as  you can  see in  the

example here to the right ,you have a four times four window and you have a with selective filter

of size two in both dimensions and we have a stride of two which means actually that there are

only four positions that this filter can have. So when we so then actually when we go around we

place the filter over which one of these four positions and if we have this max pooling approach

we just pick the biggest number in each position. An alternative approach is average pooling then

you take the average value in each little square and you have pop that result here. So the output

here and given this example is a two times two matrix instead over four times four. So that's also

pretty straightforward. There are two phenomenon or two aspects of the neuron structures used

in this networks for the convolution and pooling labels. So two phenomena is Weight sharing

and Local connectivity,  and both these phenomenal aspects are actually attempts to fight the

complexity. So for example it's assumed that when you apply a filter you should apply it in more

or less in the same fashion doesn't matter where on a input array you apply it the behavior should

be  the  same,  so therefore  normally  you make restrictions  on the weight  so you say for  the

weights of the neurons involved should be the same doesn't matter whether the filters employed

here and here, neurons involved should keep the same weights in these cases. So therefore in a

normal artificial neural network the weights could be to all something (23:04) separate, so there

are no restrictions on connects a little memory (23:08) but in this case at least for these subsets of

weights for this subset of neurons you can imply the restriction that should be the same. So the

other thing local connectivity is also as you know that in a general ANN the neural connections

any neuron can be connected to any other neuron, but here because we have this layer structure

and also certain neurons  applied in a certain filter then it's also normal that pretty strictly restrain



the connectivity among the neurons involved, so post these things together contribute to making

the system more efficient. When leaving the convolution and pooling layers and before entering

the fully connected layers the output of these previous layers is flattened. By this is meant that

the dimensions of the input array from early phases are flattened out to one large dimension. So

you can see a small example to the right but you can also have a bigger one you have a 3d array

with  the  shape  of  10  times  10  times  10,  so  when flattened  would  become a 1d  array  with

thousand elements. So this is pretty straight forward. So now we have something that is easily

and normally it can be put as input to a kind of standard artificial neural network.

After the flatten we move to the fully connected layers. So in contrast to the earlier layers who

primarily  did  the  feature  extraction,  the  fully  connected  layers  are  supposed to  do  typically

classification or something of that kind. The fully connected layers takes as input the flattened

array represent the activation match of high level features from earlier arrays and outputs an N

dimensional vector typically. So N is the number of classes that the program has to choose from,

so for example if the task is digit classification and N would be ten since there are 10 digits. And

the fully connected layers determine which is best correlate to a particular class. So and you can

have different kinds of activation functions in input layer, you can have the ones we already

discussed  but  there's  also  something  called  Softmax  activity  function  and  that's  particularly

useful for handling multiple class classification problem. So essentially what that kind of activity

function ensures is that the outcome, the output in this vector is a sum of numbers that equals to

1, so it's the probability it gives you a probability for whether the instance you look at, found an

instance in the image is a member of one of these classes so that can be pretty handy.

Finally here there are few comments on the activation functions that could be used, so many

times you use different kind of activation functions in different parts of this kind of complex

system. So if  we look at state-of-the-art it's  very usual too common to use something called

Rectified  Linear  Unit  activation  function  in  the  convolution  and  pooling  layers.  It's  a  very

straightforward function and easy to handle, there are no negative things with your doing that.

For the for the output you can do different things, you can use what was already mentioned

Sigmoid  functions,  Hyperbolic  functions  if  you  have  a  binary  classification  problem.  For

multiple class by that classification problem the Softmax function is very popular because you

get a normalized input in terms of probabilities for class membership. Sometimes people use also



Gaussian functions but that's not the most common, you can also have an identity activation

function which is recommended for regression problems.

Here we will we go through another example and it's also mentioned this example it's a pretty

well-known example of a CNN, actually one of the first real systematically carried out systems

of this kind. So it's from 1990, so it's pretty old given the use of this sub area and it's a system

where you were the purpose is to analyze handwritten machine printed characters  actually,  I

mean they are an image form so there are infinite pixels so and it's still an image recognition

problem. So this is rightly you can see here this is more of a repetition of course you can see that

there are two of these pairs of convolution and subsampling layers and then it's a full connection

area  so  there  one  flattening  layer,  two  fully  connected  layers  and  finally  there  is  Softmax

classifier applied. 

So here you can see you also see clearly how this dimensions vary I mean this is of course a key

issue here to understand how the size of this array so how complex the problem you create. So

here it's a grayscale 32 times 32 grayscale image that's what you start from and then you are you

have a convolution layer with a filter of size 5 and stride of 1. So then out of that you get the

matrix 28 times 28 times 6. And then actually you apply a second layer where you reduce those

dimensions with two pooling layer. So after that, you have a different kind of convolution, you

have a different kind of pooling, so then in the end you are down to something that is 5 times 5

times 16 actually. And then you have two fully connected layers an output layer and in the there

is a mapping on the digits that is 0 to nine.

So you can see as a summary of the system you can see the different layers employed, you can

see the kind of feature maps produced the sizes the filter kernel is the equivalent synonym to

filter, so you can see the filter supplied you can see the strides, you can see the kind of activation

functions. So hyperbolic tangent is a variant of sigmoid. So obviously here in this very early

system it wasn't so popular to use this array very new function at that point so still it was the

fashion to use Sigma related functions. So this was an example again of the same scheme and

finally I will give you some timeline for what happens in this area as I said the pretty young area,

maybe one can say that LeNet the one example I showed you lately is more or less the point

where this really took off. There were a number of precursors in the period before and actually

this area really got famous only at the point where you've got more powerful hardware to support



this system because these systems are very complex and takes a lot of computing power so and

the existence and the knowledge to apply special hardware for running these systems made a big

change  and  I  would  say  that  the  big  success  story  is  this  2012  system  Alexnet  by  Alex

Krizhevsky. So that was convolutional neural networks, I hope you bought a fare picture it may

be not the simplest area but it's very important component in this whole realm of artificial neural

networks. So thank you for attention, at the end of this lecture the next lecture is 6.9 will and this

week and the lecture is about deep learning and some recent developments thank you.


