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Welcome to the number six lecture of the six long six week the course in machine learning. The

theme of this lecture is heavy learning an associative memory. So as you can see from the map of

the lectures this week we have now left the main stream of work on artificial neural networks the

feed-forward networks and recurrent neural networks and turn to another category of systems

which  can  best  be  characterized  by  the  term associative  memory  but  we  will  first  turn  to

something  more  specific  which  we  call  Hebbian  learning.  Hebbian  learning  theory  is  a

neuroscientific  theory  claiming  that  an  increase  in  such  synaptic  efficacy  arises  from  a

presynaptic  cells  repeated  and persistent  stimulation  of  a  postsynaptic  cell.  This  theory  was

introduced by Donald Hebb in his 1949 book the Organizational Behavior. The theories also

called  the  Hebbs  rule,  Hebbs  postulate  or  cell  assembly  theory.  Hebb expressed  himself  as

follows, let us assume that the persistence or repetition of a reverberator activity tends to induce

lasting cellular changes that add to instability. When an axon of cell A is nearly enough to excite

a cell B and repeatedly or persistently takes part in firing in some growth process or metabolic

change takes place in one or both cells such that the efficiency of A as one of the cells firing B is

increased. Actually as it turns out neuron A has to fire slightly before B are not fully in parallel

to manifest the causality relation. So this elaboration of Hebbs's work is called spike timing-

dependent plasticity. What is Hebbian Learning in an Artificial Neural network? The theory is

often summarized as cells that “fire together wire together”. It's an attempt to explain synaptic

plasticity  the  adaption  of  brain  urines  during  the  learning  process.  In  an  ANN  setting  the

plasticity is implemented through adaption of weights. So Hebbs law can be represented in the

form  of  two  rules.  If  two  neurons  on  either  side  of  a  connection  synapse  or  activated

synchronously then the weight of that connection is increased. If two neurons of either side of a

connection  read  synapse  are  activated  asynchronously  then  the  weight  of  that  connection  is

decreased. So Hebbs law provides the basis for unsupervised learning. Learning here is a local

phenomena occurring without any feedback from the environment. Let's turn now to what we

call  the  Hebbian  learning  algorithm.  So first  there's  always  an  initialization  so  the  synaptic

weights and the threshold is said to small random values in the interval 0 to 1. Then we have this

step of activations where we compute the postsynaptic neuron output from the presynaptic input

elements, denoted here as Xij from the data item Xj and j here denotes the number of the training

instance data item considered, while i is one of the elements of the this input vector. So actually



the output from the postsynaptic neuron Yj is 1, if the sum of the input times the weight on the

input connection minus T where T is the threshold is larger or equal to zero, if not Yj is zero. So

after that that the output value of the postsynaptic neuron is calculated, one can go to step three

which is the learning phase and the learning follows that something called the activity product

rule which captures the essence of the Hebbian theory. So here we update the weights in the

network and the weight correction is turned by this so-called activity product rule, which says

that the new weight that is going to apply the in iteration J plus 1 is equal to the old plus a term

which is alpha which is a learning rate parameter, as already comment in a kind of damping

factor that can be between 0 & 1, multiplied by the new calculated value of the post synaptic

neuron times the input value from the presynaptic input element. And after that we start again we

use a new data item and the same procedure is repeated.

Let us now look at an example of this algorithm. So we have a neuron for pre synaptic inputs x1

to  x4.  We  have  weights  on  the  connections  for  those  inputs,  we  have  an  output  from the

postsynaptic neuron Y, we assume a threshold of 2 we assume a learning rate of 1 and we initiate

all the weights to uniformly to all of them to one and then we will now look at two training

instances one zero one zero one zero one zero and look at how the calculations are made. As you

can see here we have instantiated the inputs to the first elements of the first training instance, we

have the predefined weights what we do now is this first installation we call zero and then we

have a learning rate of one and we have a threshold of two, so the first thing is we do is we use

the first formula for Y and create the sum, so as you see here what we do is a sum the input

values with the appropriate weight values and then we subtract with the threshold nearly gives

zero but as this fulfills the first criteria, we can output one. So that's the first step. So now we

have an output value. So then we are in the position that we can calculate the weight update, so

we calculate the Delta weight which is the actually the learning rate times the value new value of

Y times the input values on the various input variables. So as you can see this gives us 1 0 1 0

and if we add that to the old weight we get the new weights 2 1 2 1. As the second data item for

the second iteration is identical to the first, the calculation looks very very very similar. We still

get an output a 1 we update the weights but what we can see and I think it is the only interesting

observation on this slide, is that in the cases where we have a synchronous activation, both of the

presynaptic and the postsynaptic equal to 1 in this case. Then we further strengthen the weight of

that connection, which is actually consistent with the hebbian theory. And I want to say a few



words about associative memory. In psychology associative memory is defined as the ability to

learn and remember the relationship between unrelated items. This could include for example

remembering the name of someone or the aroma of a particular perfume or any other sensory

impression. Associated memories declarative memory structure and often episodically based. A

normal associative memory tasks involve the testing processes on the recall of pairs of unrelated

items such as face-name, pairs but in the realm of human psychology associative memory is

obviously a very wide term. When we turn to artificial intelligence and machine learning the

term gets more precise.  So in these two areas associative memory refers to a broad class of

memory structures with mechanisms for storage and recall that can handle general patterns and

pattern  matching.  Theoretically  all  kinds  of  structures  and  data  types  should  be  able  to  be

handled in the same system. There is also a clear coupling to the area of content addressable

memory so called CAM techniques which is a more classical core area of computer science. So

for a associative memory in the computer science setting on the one end of the spectrum there

are memorization of specific objective situations, and recall of these based on detail  but still

partial  or noisy descriptions.  In the other end of the spectrum there are analogical  reasoning

where structurally similar but domain unrelated patterns can be recalled. Domain ways you can

get something back that is from a different route but it's still in some structural way similar to

your query so to say. In the in the middle there are case based reasoning where separate patterns

can trigger recall  of larger patterns. So central concepts in associative memory are similarity

measures, spatial or temporal,  another technological aspects of the pattern space like valleys,

hills, basins. Optimality criterion aspects of the search page like local minima maxima attractors

etc. Ideally want to say that one wants an associative memory system that has as many stable

well separated local business as well as memories to store.

So we have two forms of associative memory. One is called a Auto associative memory and in

Auto  associative  memory  could  also  be  called  auto  association  memory  or  auto  association

networks.  It's  any  type  of  memory  that  enables  one  to  retrieve  a  more  complete  object

descriptions from a partial description. So in more technical terms the input and output factors

have exactly the same form so now obviously that Xi and Yi has the same form for the vectors X

and Y. So as you see an example to the right we have the partial descriptions of a  particular

object but there are details missing or a noise, but what you can retrieve is the full description or



full picture of that object. So these concrete examples are typical or restoration of imagery like

this one or the restoration of speech fragments.

The other category of associative memory is called Hetero associative memory so here on the

other hand man can retrieve not only object description on the same form, but potentially also

wider  range  of  patterns  still  satisfying  some measure  of  similarity  with  respect  to  a  partial

description. So in terms of vectors the input vector X and the output vector Y can have very

different forms. So as a an example related to the above as you we have as input a key and what

we can retrieve is the situation around the application of a key, which is actually part of a door

and a lock what were the key is applied. Let me say a few words about some key concepts here. I

will talk about three things mainly something called Attractors, something called Basin’s and

something called Bifurcations so an attractive attractor is a state toward which other states in the

region evolve in time similarly each attractor has a basin which is a surrounding region in state

space so the all trajectories starting in that region end up in the attractor sooner or later so you

can see that illustrated in three ways to the right three different kind of images that illustrate that

fact the basses belong to different attractors are separated by a narrow boundary which can have

a very irregular shape the appearance of such a boundary separator is called before occasion for

initial positions close to the boundary small fluctuations can push the system either into the one

or into the other basin and therefore either finally into either the one or the other attractor so

close to the boundary the system beams chaotically but inside the bath and it moves predictably

towards its attractive ideally as already been said one wants an associative memory system that

has many well separated basil's as one have one has memories to store so this was the end of the

this lecture thanks for your attention the next lecture six point seven will be on the topic octal

networks and Boltzmann machines thank you goodbye


