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So welcome to this fifth lecture of the six week of the course in machine learning. The theme

of this week is Recurrent Neural Networks, so looking at our map for this week you can see

where we are we really in the last three lectures we looked into feed-forward networks with

back propagation, and actually recurrent neural networks is an area which is clearing within

that tradition. And the key point here is the problem with the networks we looked at up to

now, not necessarily are very good at handling complex data sequences and temporal starters.

So recurrent neural network have the ambition to remedy those weaknesses. Recurrent neural

network is a class of artificial neural network which are able to handle sequences or complex

data in space and time. This allows RNNs to exhibit temporal dynamic behaviors. So unlike

feed-forward neural networks RNN have a memory, some kind of memory or persistent state

that  affects  forthcoming  computations.  It  should  be  observed  that  many  RNN  systems

implements memory indirectly by unfolding of the network into time step using hidden units.

So I can say this is a stateless fashion and we will come back to that in more detail. Only

some RNN has explicit cell states which we call the Stateful fashion. So RNN can use their

internal  state  independently  on  how  others  are  that  is  implemented  to  process  temporal

sequential structures, and varying lengths of inputs and outputs. This makes them applicable

two tasks such as handwriting recognition or speech recognition. So one could say that the if

you look at the two big areas actually today of machine learning, one has to do with language

and speech and one have to do with images. So one can say that RNN really contributes to

make this kind of networks efficient in language and speech domain, while will come later

when we look at convolutional networks we will say that they target at the goal to make a

RNN efficient  in  the image analysis  domain.  So RNN performs the same task for every

element  of a sequence that's  the reason for the name, recurrent  and that's very important

because if one should treat elements of a sequence differently that would create a very very

complex machinery. So the elegance here is that you can handle elements in a sequence but

you treat them in a similar manner. So finally our RNN have cycles in contrast to ANNs.

RNN takes both the output of the network from the previous time step as input and uses the

internal  state  from the  previous  time  step  as  a  starting  point  for  the  current  time  step.

Obviously there are many different situations where we have more complex input then we

have used to be handled in the ANN case, so you can see at the far left of this slide we can

see the really clear one-to-one mapping. So we have one we are well defined objects, discrete

objects that map to some output values or some output class. Okay so then to the right you



can see different more complex situation so once situation could be that travel there complex

input object like an image with you really in order to handle that kind of objects you have to

divide it up you have a single input but you need some ability to look into that object and

divide it up in some fashion. So here so you can say the second case is you have a complex

object and you have to map it on a certain number of values, of certain number of classes. So

another case is you explicitly have a single and explicit sequences input could be a word, and

you want to map this sequence of word on to something like an opinion (05:23) or whatever

it  could be. A third example is that you have a sequence of input   like in a sentence in

language and so for example machine relation you can say this sequence of what should be

translated  in  another  sequence.  So that  is  another  situation.  So finally  we have the more

complex case you have many inputs, you have many outputs could be happening for example

in in video analysis and applications like that.

RNN has received substantial interest in the neural network world and can also boost many

success  stories  in  particular  in  the  context  of  applications  in  language and speech.  As a

consequence of its popularity the area has many alternative lines are development that are

totally trivial to follow. So it is not so easy always to understand the limits of this sub area,

therefore we will start to discuss what we call a Vanilla RNN the single layered RNN that can

be unrolled and replaced with strictly feed forward acyclic neural network. Requirement for

the Vanilla is that it but time can be discretized which in turn requires that the duration effect

of  single  neuron  activities  are  finite,  also  can  finite  Impulse  Recurrent  Network.  But  a

network that lacks this property is called an infinite recurrent network but obviously we will

focus on the finite type. So after looking into Vanilla RNN and we will look at two natural

extensions of that, so one extension is to allow dependencies not only backward in time but

also forward. The vanilla RNN enables us to at the later stage to look at earlier states were

actually at earlier elements of the sequence we study, but we could also reduce mechanisms

that we could look forward in time, so that's what we do in the bi-directional case. But you

can also we can also stack RNNs, you know having multi-layer systems and one reason for

that is that if we look at an application like in language we have letters and letters for word is

a sequence of letters but you can have a sentence with sequence of words and then we can say

you have  a  paragraph that  is  a  sequence  of  sentences.  So actually  when you got  a  long

sequence on language input you don't only want to look at sequence on one level you may

want to look at all these sequences on the various levels of abstraction. So therefore one can

think of that you have one RNN neuron on each of these levels and obviously the layers can



be literally involved as for the single layered case. So necessarily these two extension doesn’t

destroy the nice property of the vanilla RNN it can be unfolded into a strictly field work.

Furthermore  the  RNN does  not  solve,  the  vanilla  ones  does  not  solve  but  rather  makes

problems like vanishing gradient or exploding gradient even worse. Vanilla RNN also has a

problem to handle a very long sequences, of course many times due to that long sequences

rate  very deep networks  and deep networks  can open spawns. So we will  look into one

attempt to handle these problems Short Long-Term Memory as SLTM which introduced a

more  complex  machinery  its  neuron,  essentially  by  having  the  purpose  of  getting  better

control of the signal processing in and among the units. So finally what is worth mentioning

is that there are some architectures that are classified as RNNs but are not able to handle

dynamically  handle  input  sequences,  however  these  systems  have  cycles  and  they  have

internal memory so that's the reason for including them. An example you know such is an

associative memory architecture like a Hopfield network we also will discuss separately later.

Let's now look into what it means to unfold a vanilla RNN. So we consider the case we have

multiples time steps of input, multiple times that of internal state and multiple times that's our

outputs, which actually happens when we need to be there when we handle a sequence. So we

can unfold the original RNN which has a cycle into a graph without any cycles. So this means

that we in a way duplicate, we create copies of their unit where the cycle is removed, so the

output from the first instance goes into the second, the input of the second goes into the third

and so on and eventually output in each stage then of course could be fed upwards from any

of the states to two other Network structures. So we can see that the output Y an internal state

“U” from the previous step are passed onto the network as input for processing in the next

time step. So biases also of course is still there I mean biases is as a instinct inherited from

the general concept of neural network but we will this consider that for the moment because it

would just block the site. So a key thing here is that the network does not change between the

unfolded time step, the same weights are used for each time step is only the outputs and

internal  states  that  differ.  So exactly  what  we do is  replicate  the  exact  structure  without

modifications. One can also remodel so as you see in the middle here when the most natural

thing is to view this on the same level but then you make copies for each instance of the

sequence or instance in time but one can also reshape that so graphically one can say that

what this does is that it's add to the depth of the network, so that the copies is that going our

layer in our sample they are layered in a in a vertical way but with this is very just different

ways of depicting it. The important thing here is that by this transformation it is done in a



great  way  ensures  that  the  result  of  the  unfolding  becomes  just  a  normal  feed-forward

Network. Of course by unfolding and times if we have a long sequence we create a very deep

feed-forward Network one player for each input sequence.

On this slide you can simply see another example how have the unfolding that can looks like

but you can input in RNN for every instance you get output them from every instance but you

also feed the internals of the internal state from instance to instance.  The consequence of

unfolding for the learning process as follows, so if you carefully do what we described in the

last  slide  and  you  actually  get  a  straightforward  feed-forward  Network,  it's  potentially

possible to still update the weights that means to learn through back propagation. So in the

back propagation of error will given time step depends on the activation of the network at the

prior time step, so error can be propagated back to the first input times that of the sequence of

that error gradient can be calculated the weights of the network can be updated. So with only

marginal modifications we can talk about then back propagation through time, and it doesn't

matter  whether  we  backpropagate  through  the  normal  layers  of  the  network  or  we

backpropagate through those unrolled levels of the RNN, I mean of course there are subtlety

here, so for a recurrent network the loss function depends on the activation of the hidden

layer not only through its influence on the output layer but also through its influence on the

hidden layer at the next steps. So small complications are more or less the same procedures

can be applied.

The most natural extension of the vanilla RNN is to introduce many levels of RNN or stacked

RNN. Obviously each layer in the stack can be individually unfolded as for the single layer

case. The main reason having many layers is that the layers correspond to different levels of

abstraction or aggregation for the sequential and temporal data items. As an example in word

processing the first layer can model sequences of characters, the second layer level sequences

of words, the third level sequences of sentences etc. The risk by increasing number of layers

of course is to make problems like vanishing gradient even worse but we still because we

unfold as you see I mean every layer is still considered to be possible to unfold, so this means

that the resulting structure is still then a conventional feed-forward network, but with some of

its problems increased of course. The next extension is what is called bi-directional recurrent

neural networks. So by introduction of that the output layer can get information from past and

future states simultaneously, means both backwards and forward links are enabled. So the

principle in realizing that is to split the neurons of a regular RNN in two directions one for

positive time direction for States and another for negative time direction.  So one can use



there's a second step of unfolding, so you have the normal unfolding to handle the sequences

but in order to being able to look both forward and backward for every already unfolded

sequence you duplicate that with one copy for the forward direction and the other for the

backward direction. So actually the these two hidden layers are can both be connected to the

same output and they are independent of each other, that doesn't mean that one direction

feeds  something  into  the  other,  so  they  can  be  treated  separately  and  be  used  to  give

information to later levels one by one. Of course a natural extension now is to combine a

stacking  of  RNN by the  bidirectional  model,  so  nothing prevents  that  even bidirectional

recurrent networks can be can be stacked. So obviously to sum up we are still working with a

scenario  here  where  everything  we  talked  about  can  be  unfolded  and  the  net  result  of

everything we have done would still  be before feed forward network,  which is  a  certain

beauty about it.

So let's now go back a little and look at some of the challenges for neural networks feed-

forward  ones  and  in  particular  also  for  RNN.  So there  are  three  kinds  of  problems  the

vanishing gradient problem, we talked about that already and the problem there as we already

said is that the gradient become too small and the reason for becoming a so small is that the

individual derivatives or gradients are combined using the chain rule and the chain rule is

applied one time in every step so if you're many steps and you start with the gradient in range

of zero to one. Very rapidly they approach zero and the effect of that is that the update of

weights are stuck. The opposite problem is that you can also get very large error gradients

and this kind of large updates have the effect that the network can become very unstable. So

there are ways of handling that too and in many cases it's many times more difficult to defend

oneself against the vanishing gradient problem. Also one issue it is the very long sequences

and temporal dependencies, of course they are not a direct problem but they indirectly create

a problem in particular in both problems of vanishing gradient because they create very deep

networks,  and  these  very  deep  networks  are  than  hampered  by  the  other  mentioned

performance. Long short term memory networks LSTM are extensions of recurrent neural

networks which basically  extends their  memory function.  The core of the approach is  to

elaborate the interior of a vanilla RNN and unit with the purpose to increase control of signal

flows. LSTM was explicitly  designed to combat the vanishing and long-term dependency

problems LSTM was introduced by Hochreiter and Schmidhuber in 1997 and the unit's of

LSTM are used as building blocks for the layers of an RNN which is then often than as a

whole called LSTM network. So LSTMs enable RNN to remember their inputs over a longer



period of time this is because LSTM contains their information in a memory that is much like

the memory of a computer because general computer because the LSTM can read/write it

information  from  its  memory.  LSTM’s  are  widely  recognized  academically  as  well  as

commercially extensively used for speech and language processing by companies like Google

Apple Microsoft and Amazon.

So hopefully this slide explains the difference between an RNN vanilla unit and a LSTM unit.

So actually you can see that apart from the normal signal processing functionality of the RNN

neuron the LSTM neuron has a much more complicated interior and essentially the difference

is that the LSTM unit apart from anything else has some gating functionality that controls the

signal flow.

So the LSTM memory can be seen as a gated cell, where gated means that the cell decides

whether or not to store or delete information typically by opening the gates or not based on

the important is a science to the information at hand. The assigning of importance happens

through weights which are also learned by the algorithms. It simply means that it learns over

time  which  information  is  important  which  it's  not.  Specific  to  LSTM  is  the  cell  state

manifested by the horizontal line running through the top of the diagram of the unit. This is

manifested by the different “C”, “C” for cell state. Also in a LSTM unit you have three gates

this case determined whether or not to let new input in input gate, delete information because

it is an important forget gate or let it impact the output that the current step output gate. So

that's the basic functionality of this kind of unit.

So some comments on structural of aspects of LSTM. So in principle LSTM's can ask for

vanilla RNN be unfolded, be stacked in a multi-layer structure, be arranged in a bi-directional

fashion all these are possible. If this is done in a stateless fashion that no cell state is use, that

is the state information just  flows across. Then the resulting network is the normal feed-

forward network potentially with backpropagation, I mean so however if the LSTM cells use

explicit  cell  states  stateful  fashion it  becomes  more  clear  and there  is  no  guarantee  that

exactly  this  feed-forward  Network  me  can  be  used  as  in  the  default  state.  But  nothing

prevents to combine these elements in more complex structures as emission here. So what we

have done in this lecture is to look into some of the more important aspects of RNN, so we

looked at we call oh we call the Vanilla type that Full or standard RM that can be unfolded.

We also  have  talked  about  how that  can  be  extended  with  will  multiple  layers  with  bi-

directional links and we then also showed that one approach well known approach how the



signal processing can be improved in the LSTM case. There are so many different various in

this  area that and below in this line you can see a few of them, many networks that are

classified that there are RNNs and there are so many approaches moreorless these different

approaches relates to the simple ones so for example a gated recurrent unit GRU is a simple

version of LSTM. Elman networks are  very early kind of standard of RNN’s with other

simple structures local networks will be described in another context of associative memory

and so on. But it's outside the scope of this lecture to go in more details of all this I would say

genre of different approaches developed. So this was the end of this lecture thanks for your

attention, the next lecture 6.6 will be on the topic Hebbian learning and associated memory.

thank you


