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Welcome to the third lecture the sixth week in the course machine learning, today we will

talk about the model of a single neuron in ANN. We are now in the middle block of lectures

which all handles the kind of neural network that we called feed-forward networks. We did

study the perceptron which was a precursor, today we will study a single neuron as part of a

multi-layer network and then finally we will look at the full  multi-layer problem and the

learning algorithms needed for that.

An artificial neural network has typically many neurons and several layers in contrast to the

single neuron perceptron that we discussed in the earlier lecture. In this lecture we will study

a single neuron but of the kind that builds up complex networks today. We will look at how

the neuron performs in a forward feeding manner and how its input weights are updated in

each cycle. We will use the same kind of examples as we used for the perceptron, even if we

study the neuron in isolation it will perform in the same manner as part of the larger network

An  ANN  network  consists  of  units  and  connection  between  units.  A  is  considered  the

predecessor of B and be the successor of B in such a network. The output of A is the input to

B etc. The behavior of input-output units are special  in the sense that they simply output

external input, so to say without any process they are introduced to create a homogeneous

model. A slight disclaimer about the learning function in this case, so when we will talk about

the learning in here which is the Delta rule essentially that learning function is relevant for

the single neuron case. In the multi-layer case we will have a neuron will be even the single

neuron will be handled differently because the learning rule in that case will  be the back

propagation however.

At this point in time you have seen a model of a neuron many times, but obviously we will

repeat it here, so you have a body of the neuron you have inputs you have weights, you have

a summation function where you sum up in every phase, the product of the input multiplied

by the weights. Then you have an output and that output depends on the sum is greater than

zero in that case, the output is not just for sum but a function applied to that sum and that

function we call  activation function and we will  come back to that in a minute,  and that

results in an output but we are also normally for supervised learning we have a target value

for the output to compare it. So the difference between the target value and the output value is

the basis for error estimate that we call E. And as you see the threshold of the neuron is

handled  as  already  described  through  an  extra  input  to  the  neuron.(04:13)So  the  core



computation of ANN which is also something you should be familiar with now, is that you

assign weights to all the inputs you decide on a threshold, you remodel the threshold in the

way we described in terms of an additional input, you can then sum, make the weighted sum

of them of the inputs and then the output is decided as the activation function of that sum if

the sum is greater than 0 otherwise put is 0.

That's what you heard the last few slide was more or less repetition for good or for bad. Now

we come to some new parts. So the big difference between the neuron we talked about now

and the perceptron is the introduction of the transfer function. As you can see here to the top

left you can see a step function, so if you choose activation factor as being the step function

you get the same functionality as the present. But there are all other choices and I'm now

going  to  comment  on  some  of  the  aspects  you  should  think  about  when  choosing  the

activation function. Sometimes the activation function is called a squashing function because

for the reason that certain such function squashes or saturates values as a depth asymptotic

end, obviously not all do but some do so therefore this name have come up. So if you look at

the various aspects here, so one aspect is non-linearity. One can actually show that if you

choose a nonlinear activation function then a two layer neural network can be proven to

approximate a universal function. The identity activation function with just leaves the input

value  untouched doesn't  satisfy  that  property,  so  actually  by including  this  kind  of  non-

linearity in our model we are able to handle also nonlinear problem situations. Also by choice

of function we could introduce a finite range, and actually that kind of situations tend to be

more stable and efficient.  Another thing that is important is that this function we have is

continuously differentiable, because you will see a little later here that the weight updating

mechanism  we  have  is  actually  based  on  a  gradient  based  techniques  which  demands

differentiability on components of the model. In some cases one can handle of course the

situations where the segments are differentiable so it could be cases where there are some

having singular points that can be handled in a special manner. Another property of normal

function is monotonicity, so if the function is monotonic, you can also guarantee some nice

properties. Also the in the same fashion also the properties of derivative are important for

ensuring stability and efficiency. The special circumstance is near origin, so if the function

we choose approximates the identity  function near the origin,  we can battle handle small

numbers and as you can we will see later one of the big problems we have with all weight

updating methods based on the gradient method and we have the problem of the vanishing

gradient which means that if you have gradient that becomes very small then we came to a



situation where the ways are not updated at all, so the weight updating gets stuck due to the

gradients approaches zero. 

So actually then the vanishing gradient problem is a difficult found especially in the gradient

based learning methods which includes backpropagation. So the way it's received an update

proportional  to  the  partial  derivative  about  the  error  function  with  respect  to  the  current

weight. So the problem is that then the gradient will be vanishingly small which actually

effectively preventing the weight from changing as well. So the problem occurs because even

if singular gradients or individual gradients are not too small in this technique these gradients

are combined using the chain rule, so as a total result you may end up with a small value. So

this problem has been known but it was even more highlighted pretty recently when people

started to work with those common recurrent networks because recurrent networks tend to be

much deeper and obviously the problems worsens because the chain rule will  be applied

many many many times. So this is one of the problems that exist for all these kinds of weight

updating methods.

Let us now turn to the weight updating rule in this case called the Delta Learning rule. So this

rule as has been said is based on the gradient descent method and an error message based on

average square errors. So in this case the error measure is assumed to be the square of the

difference between the target value and the output value divided by two. And the Delta rule is

actually derived it's not the derived here, you will only see the outcome, but the starting point

for a derivation is that you look at the derivation of the error with respect to the specific

weight value you want to adjust,  as you can see the convenience of the number two, the

denominator on their measure because when we make this derivation the derivation of the

square, the two numbers will cancel each other and we get a simpler formula. So the Delta

rule becomes as follows, as so the new updated value is the old plus a learning rate parameter

as I have understood right now that all these methods always have a learning rate parameter

that may in a way damp the effect of the church (13:16) and it's up to decide whether it's one

which is means  no mechanic (13:25) or a value between zero or one. So the learning rate

parameter multiplied with the difference between the target value and output value, times the

derivative of the output function with respect to its argument which the argument is the sum

the weighted sum of the inputs and then finally also multiplied by the input value for the

specific connection. So the intuition here is of course that the part from making the update

dependent  on  the  difference  between  reference  and  output,  and the  fact  that  it  could  be

affected by a damping learning rate parameter that you are the factors here to be explained



and the reason why you introduced also the input value here is that you want to kind of

normalize this with respect, so it shouldn't be so that you update the weight, it should be so

that the input value in a self effects the updating. So by in including the input value you kind

of  normalize  the  effect  among the  different  inputs.  The derivative  of  the  of  the  transfer

function is there because the whole formula is derived through the derivation of the error with

respect to the weight where were actually the transfer function is a component. In the linear

case this derivative is one, so when you take the derivative of a linear function it's one, so

therefore this factor disappears and you get a simplified function at the bottom.

So here a very simple example it's exactly the example that we used for the perceptron but

you can see the difference we have chosen here this activation function at the top right and

obviously the introduction of that function will affect the outcome on the result, so you see

that Y here we can becomes 0.16, because as you see the function is linear in that region and

then at the bottom you can see the updates of the of the weights because as you remember in

the linear case we can use the simpler simplified formula and we do not have to care about

the derivative, also it's assumed here that the learning rate is 1 also to simplify expressions at

this moment. Ok so you also get another example here which is also the same as for the

perceptron and you can see with three inputs and the result is shown in the tabular form. So

this is the end of the lecture we have a look at the mechanism of single neuron and how

weight  updating can take  place  in  only considering a single neuron. So now in the next

lecture  we look at  full  multi-layer  the  case  and the  learning  record  in  that  case  is  back

propagations thank you for your attention goodbye.


