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Welcome to part two of the lecture on reinforcement learning. I want to start with discussing

seeing a few important distinctions within this area, so the first distinction is passive versus

active learning, the second distinction between on policy and off policy and the third aspect is

exploitation versus exploration strategies and the fourth aspect is model based versus model

free, reinforcement learning methods. The two first distinctions are very much related, so let's

start with the first which is distinction between passive learning and active learning. So of

course all agents in all these scenarios perform actions and gets reward and so on, so it's not

that  passive means doing nothing,  so actually  this  original  scenario that  we talked about

where reinforcement learning still holds, with the cycle of actions, reward, etc. The difference

here is that a passive agent executes a fixed policy,  which means that you can say this is an

agent will no free will or can consider it that this policy can have been given to the agent and

the agent is not allowed to change it, so the only thing that the agent can do is to act but

always according to a predefined fixed policy,  but the  alien (02:24) can do, can evaluate

what's happened, it can look at what rewards it get, it can look at the returns etc., and it can

also learn about the utilities of being in its various states. But this is previous circumscribed

existence.  In active learning the agent can update its policy as it learns and of course there

are different modes of that, and it can do that also while acting in the world and of course an

active agent must consider what actions is takes, what the outcomes maybe, how it affects the

rewards  etc  etc.  So  the  active  learning  scenario  is  where  there  is  much  more  dynamic

handling of the policy and its consequences and of course active learning is not more typical I

will say for the true reinforcement learning case then and then the passive learning. 

So what is very much related is this distinction between On policy versus Off policy, still one

can say that both this case is more related to an active agent because still in both cases we

assume that the agent is interested in changing its policy however in the Off policy mode, you

at least for a period stick to an invariant policy and during that period while still obeying that

policy the agent can learn in order to define a new policy that can be used in a later stage, so

sometimes you call the actual policy that you follow for the behavior policy and you call the

one  which  you want  to  establish  the  estimation  policy.  The  alternative  is  an  On policy

situation where you actually follow a policy but incrementally and dynamically change that

based on experience.  So one can say that the planning and learning parts  are interwoven

while in the off policy case the planning and learning parts are separated. 



The third distinction is between exploration and exploitation, so by that is meant that an agent

when it takes actions can follow two different approaches. On one hand it could prioritize to

follow paths already taken, whether already exist experience from those paths from those

episodes,  especially  by  priorities  those  episodes,  those  paths  that  gave  more  return.  The

alternative  is  exploration  where  you could kind of  go into deep water,  if  I  can  use that

analogy, so instead of just doing what you used to do choosing what was good, not doing

what was bad and there of course a lot of avenues you never tested, so in an exploration

oriented policy, there is a strong ingredients of trying new paths of course with the ambition

and hope that those new path should be more rewarding than the traditionally tried out once.

And of course then very solve an issue for the agent  to  decide it  could on the trade-off

between these two, because obviously it can make sense to do both at various points in time

and under various circumstances. So kind of a little more static way of managing this balance

is  to  actually  be  more  explorative  when  you  have  a  rather  weak  knowledge  or  rather

uncomplete view of the environment but when you feel or you can experience that you have a

more substantial knowledge about the situation, you could rather fall back on the tried out

paths, so but this is more like doing this in one period and doing the other in another period.

A more dynamic method which is example is called this one called epsilon greedy really do

this judgment on with the final granularity, so actually what one do is on the define a little

window so if you have an action which satisfies, which has a probability very close to one

then you keep to that, but if you cannot find actions with such a high probabilities then you

turn to exploration in general of course this distinction makes more sense with reference to

the earlier  distinctions  for the active case rather  than the passive case,  I  mean of course

somebody can give  you a predefined policy  where you should explore,  but  as  you have

known fairly well especially the trade of discussion is irrelevant, and of course exploration

versus exploitation may make sense both in a off policy situation and an on policy situation

but right one can assume that this way of dynamically balance between these two makes

more sense in the online active case. 

Finally  we  have  the  distinction  between  modern  free  and  model-based  reinforcement

learning. So we still talk about the situation where our knowledge about the environment is

not  complete  which  means  that  the  complete  picture  in  terms  of  transition  function  and

reward functions are likely but actually  there are then two approaches here what's  called

model-based  is  the  following  then  we  realize  we  have  an  incomplete  model  of  the

environment  but  our  approach will  be  to  first  to  complete  that  model  and  using  certain

schemes when we think we have completed the model to the point where we find acceptable,



we regard it as complete and fall back on the let's say the dynamic programming approach

which we already realized works well for the complete knowledge case. So that's the model

based  approach.  The  model  free  approach  is  that  we  give  up  the  goal  to  complete  the

knowledge, so actually we give up the quest for completing the transition relation and the

reward relation, rather we work directly with estimates of both the utilities. One example of

that is Q-learning that we will talk little more about and when you set up a special measure Q

value which is a particular kind of utility value, which you don't explicitly have to place on

the transition and the reward functions. What we will do now is that we will look various

approaches to solve reinforcement learning problem in the case of no complete information,

and we will talk a little about one particular model based approach which is called adaptive

dynamic programming and then we will mostly talk about model free approaches. We will

talk about an approach to doing an Direct Estimate, direct estimate of the value function. We

will look at Monte Carlo something called Monte Carlo situation, we will talk about temporal

difference learning and finally we will accept them exemplify that with a method called Q

learning.

So as you can see on the pictures here, you can get a flavour for very rough difference here,

so adaptive dynamic programming is model-based it falls back onto the build of a complete

model  and  then  applying  dynamic  program,  I  hope  you  remember  now  the  dynamic

programming does an exhaustive walkthrough of a breadth-first character, so obviously this

fits  well  with the picture see here,  so it  actually  tests  old roots up to a certain  point.  In

contrast to that among the Monte Carlo situation is a method where you make samples, so

you will select samples of episodes and this considers the rest and you base your estimates

just on those episodes, so one can say that amount of Carlo simulation take few roots but take

them all to the end to the terminal point.  In contrast to that, the temporal difference methods

actually still follow specific paths but do that in a more shallow fashion not always following

up the whole episode, rather looking at pairs of states and the differences between pairs of

states.

So the simplest  method and is  actually  model  freely because it's  in  the sense that is  not

actually needs the complete the transition functional or relation and doesn't need a complete

reward function, so actually this is a very straightforward method where you look at a sample

of epochs or episodes, and then you accumulate the averages along the way for each episode,

so here they are in this method they introduced another measure the call ‘reward-to-go’ and

actually ‘reward-to-go’ it's just some of may possibly the discounted rewards for each step in

the episode. This method keeps a running average over all these ‘rewards-to-go’ for every



episode it looks at. So and then it sets the value function to that average of all these, I mean

‘reward-to-go’ is not exactly the same as the return as we already defined it, so it's always a

slightly different  thing,  anyway it's  somehow ever  accumulated to reward and it's  for all

episodes and then you repeat, you take more example depending on how many trials you take

when the trials come to infinity theoretically and the sample average should convert to the

true utility for the state, the only problem is this is very time consuming and the convergences

is very slow, but otherwise it's very straightforward. 

The  model-based  approach  we  are  going  to  discuss  is  a  called  adaptive  dynamic

programming.  Actually  this  is  an  approach,  this  is  very  close  to  what  how  I  generally

describe the model-based approach as such, so actually what you do is to first to complete the

partially known ADP model which is to complete the full picture of the transition function

and the reward function, and then after that you apply dynamic programming as in the simple

full knowledge case. So therefore you have some strategy to learn this function and mostly

it's a straight forward approach there, so actually you collect  examples of rewards for this

kind of state action triples and you collect examples also of the transition triples and you take

average of collected rewards and you calculate the fractional time such an action leads to a

specific other states, so it's basically making a lot of observations of these kinds of triples and

making some statistics based on that, so then you easily define these two  functions based on

that material. 

Now we will turn to a model free learning approach called Monte Carlo (MC) simulation. So

Monte  Carlo  methods  are  computational  algorithms  that  are  based  on  repeated  random

samples to estimate some property, target property of the model. And actually Monte Carlo

simulations simply apply Monte Carlo methods in the context of simulations, so then Monte

Carlo reinforcement learning methods learns directly from samples of complete episodes of

experience.  So  this  is  a  limitation  this  method  is  built  on  the  analysis  of  complete  one

complete episode starting with one state and ending in the terminal state. So Monte Carlo

method is model free, no explicit model of the transitions and rewards are built up, so MC

takes mean returns for states in all the sampled episodes. The value of expectation of a state is

set to the iterative mean of all the empirical returns of the episode. The two variants here

slightly different, so you know in one method you only consider the first time you come to a

new state because there may be episodes that passes state many times before it enters the

terminal but in the other approach you just select or measure data, make observations for

every state doesn't matter how often you visit them. 



Here you can see an algorithm for first visit Monte Carlo every visit Monte Carlo version is

very similar it just modifies step four and in the middle of the algorithm, so it considered

States every time there you pass them not only at the first occurrence, for the rest the general

idea with the algorithm is you generate episodes using the current policy P and for each

generated episodes you go through the episode for each state, you conditionally add a return

item to the returns list, so in this returns list you will get as many items that you have that you

have States and then during all the iterations you successively calculate the iterative average

for all the returns in the list, and then of course in every round you set the value of the value

function of the state to that computed average or on the return, when you've done that for an

episode  you  will  generate  a  new  episode  and  you  repeat  it  all  over  again  until  some

convergence  occurs.  And  actually  on  the  next  slide  you  can  see  how  we  calculate  the

incremental mean, but I don't have any more comments to that. 

So here you get a simple example and that shows how the Monte Carlo simulation algorithm

actually works. It is just two states and you look at two episodes with a certain structure for

the rewards and the formalism is explained in this slide. So then you can see pretty detailed

calculation how things are done for the first visit Monte Carlo method, so that you can see

that you calculate the return for the first ten state in the first episode and then you calculate to

return for A in the second episodes and then you can see that the interesting item here is the

average of those, so then the volume function of our all becomes the average and they do the

same for the second stage and the similar calculation will happen for the every visit case, so

this is all very straightforward. 

The last thing we will do in this part is to look at another formal model free learning which

called the temporal difference learning or TD. It's actually class of model free reinforcement

learning, which learn by bootstrapping from the current estimate of the value function, so

actually what this kind of  algorithms does is that it's to take a sample from the environment

like the Monte Carlo situations and then perform a test based on current estimates like what

the window adaptive dynamic programming methods. So while Monte Carlo methods only

just  estimate once the final  outcome is known which means that you consider the whole

episode, so here the temporal difference method adjust predictions before the final outcome is

known.  So  actually  adjusts  the  estimated  utility  value  of  the  current  state  based  on  its

immediate reward and the estimated value of the next state, so actually it's in principle update

based on the  relation  to  the  next  neighbour.  So  I   assume the  word term ‘Temporal’  is

motivated by there's normally a temporal relation when you move from a state to another and

you at the end you can see the updating equation, where you actually say that the value state



the new value state is the old value state, plus a certain  parameter times the reward that you

get when you either take the step plus lambda which is this discount which always normally

have an in this situation, times the estimate for the next step Minus the state you are, so and

of course by choosing different values of alpha and lambda you can get slightly different

functionality here. Here so this lecture will be continued soon in part in the part 3 video.

Thank you!


