
[Music]

Welcome to part two of the lecture on reinforcement learning. I want to start with discussing

seeing a few important distinctions within this area, so the first distinction is passive versus

active learning, the second distinction between on policy and off policy and the third aspect is

exploitation versus exploration strategies and the fourth aspect is model based versus model

free, reinforcement learning methods. The two first distinctions are very much related, so let's

start with the first which is distinction between passive learning and active learning. So of

course all agents in all these scenarios perform actions and gets reward and so on, so it's not

that passive means doing nothing, so actually this original scenario that we talked about

where reinforcement learning still holds, with the cycle of actions, reward, etc. The difference

here is that a passive agent executes a fixed policy, which means that you can say this is an

agent will no free will or can consider it that this policy can have been given to the agent and

the agent is not allowed to change it, so the only thing that the agent can do is to act but

always according to a predefined fixed policy, but the alien (02:24) can do, can evaluate

what's happened, it can look at what rewards it get, it can look at the returns etc., and it can

also learn about the utilities of being in its various states. But this is previous circumscribed

existence. In active learning the agent can update its policy as it learns and of course there

are different modes of that, and it can do that also while acting in the world and of course an

active agent must consider what actions is takes, what the outcomes maybe, how it affects the

rewards etc etc. So the active learning scenario is where there is much more dynamic

handling of the policy and its consequences and of course active learning is not more typical I

will say for the true reinforcement learning case then and then the passive learning.

So what is very much related is this distinction between On policy versus Off policy, still one

can say that both this case is more related to an active agent because still in both cases we

assume that the agent is interested in changing its policy however in the Off policy mode, you

at least for a period stick to an invariant policy and during that period while still obeying that

policy the agent can learn in order to define a new policy that can be used in a later stage, so

sometimes you call the actual policy that you follow for the behavior policy and you call the

one which you want to establish the estimation policy. The alternative is an On policy

situation where you actually follow a policy but incrementally and dynamically change that

based on experience. So one can say that the planning and learning parts are interwoven

while in the off policy case the planning and learning parts are separated.

The third distinction is between exploration and exploitation, so by that is meant that an agent

when it takes actions can follow two different approaches. On one hand it could prioritize to

follow paths already taken, whether already exist experience from those paths from those

episodes, especially by priorities those episodes, those paths that gave more return. The

alternative is exploration where you could kind of go into deep water, if I can use that

analogy, so instead of just doing what you used to do choosing what was good, not doing

what was bad and there of course a lot of avenues you never tested, so in an exploration

oriented policy, there is a strong ingredients of trying new paths of course with the ambition

and hope that those new path should be more rewarding than the traditionally tried out once.

And of course then very solve an issue for the agent to decide it could on the trade-off

between these two, because obviously it can make sense to do both at various points in time

and under various circumstances. So kind of a little more static way of managing this balance

is to actually be more explorative when you have a rather weak knowledge or rather

uncomplete view of the environment but when you feel or you can experience that you have a

more substantial knowledge about the situation, you could rather fall back on the tried out

paths, so but this is more like doing this in one period and doing the other in another period.

A more dynamic method which is example is called this one called epsilon greedy really do

this judgment on with the final granularity, so actually what one do is on the define a little

window so if you have an action which satisfies, which has a probability very close to one

then you keep to that, but if you cannot find actions with such a high probabilities then you

turn to exploration in general of course this distinction makes more sense with reference to

the earlier distinctions for the active case rather than the passive case, I mean of course

somebody can give you a predefined policy where you should explore, but as you have

known fairly well especially the trade of discussion is irrelevant, and of course exploration

versus exploitation may make sense both in a off policy situation and an on policy situation

but right one can assume that this way of dynamically balance between these two makes

more sense in the online active case.

Finally we have the distinction between modern free and model-based reinforcement

learning. So we still talk about the situation where our knowledge about the environment is

not complete which means that the complete picture in terms of transition function and

reward functions are likely but actually there are then two approaches here what's called

model-based is the following then we realize we have an incomplete model of the

environment but our approach will be to first to complete that model and using certain

schemes when we think we have completed the model to the point where we find acceptable,

we regard it as complete and fall back on the let's say the dynamic programming approach

which we already realized works well for the complete knowledge case. So that's the model

based approach. The model free approach is that we give up the goal to complete the

knowledge, so actually we give up the quest for completing the transition relation and the

reward relation, rather we work directly with estimates of both the utilities. One example of

that is Q-learning that we will talk little more about and when you set up a special measure Q

value which is a particular kind of utility value, which you don't explicitly have to place on

the transition and the reward functions. What we will do now is that we will look various

approaches to solve reinforcement learning problem in the case of no complete information,

and we will talk a little about one particular model based approach which is called adaptive

dynamic programming and then we will mostly talk about model free approaches. We will

talk about an approach to doing an Direct Estimate, direct estimate of the value function. We

will look at Monte Carlo something called Monte Carlo situation, we will talk about temporal

difference learning and finally we will accept them exemplify that with a method called Q

learning.

So as you can see on the pictures here, you can get a flavour for very rough difference here,

so adaptive dynamic programming is model-based it falls back onto the build of a complete

model and then applying dynamic program, I hope you remember now the dynamic

programming does an exhaustive walkthrough of a breadth-first character, so obviously this

fits well with the picture see here, so it actually tests old roots up to a certain point. In

contrast to that among the Monte Carlo situation is a method where you make samples, so

you will select samples of episodes and this considers the rest and you base your estimates

just on those episodes, so one can say that amount of Carlo simulation take few roots but take

them all to the end to the terminal point. In contrast to that, the temporal difference methods

actually still follow specific paths but do that in a more shallow fashion not always following

up the whole episode, rather looking at pairs of states and the differences between pairs of

states.

So the simplest method and is actually model freely because it's in the sense that is not

actually needs the complete the transition functional or relation and doesn't need a complete

reward function, so actually this is a very straightforward method where you look at a sample

of epochs or episodes, and then you accumulate the averages along the way for each episode,

so here they are in this method they introduced another measure the call ‘reward-to-go’ and

actually ‘reward-to-go’ it's just some of may possibly the discounted rewards for each step in

the episode. This method keeps a running average over all these ‘rewards-to-go’ for every

episode it looks at. So and then it sets the value function to that average of all these, I mean

‘reward-to-go’ is not exactly the same as the return as we already defined it, so it's always a

slightly different thing, anyway it's somehow ever accumulated to reward and it's for all

episodes and then you repeat, you take more example depending on how many trials you take

when the trials come to infinity theoretically and the sample average should convert to the

true utility for the state, the only problem is this is very time consuming and the convergences

is very slow, but otherwise it's very straightforward.

The model-based approach we are going to discuss is a called adaptive dynamic

programming. Actually this is an approach, this is very close to what how I generally

describe the model-based approach as such, so actually what you do is to first to complete the

partially known ADP model which is to complete the full picture of the transition function

and the reward function, and then after that you apply dynamic programming as in the simple

full knowledge case. So therefore you have some strategy to learn this function and mostly

it's a straight forward approach there, so actually you collect examples of rewards for this

kind of state action triples and you collect examples also of the transition triples and you take

average of collected rewards and you calculate the fractional time such an action leads to a

specific other states, so it's basically making a lot of observations of these kinds of triples and

making some statistics based on that, so then you easily define these two functions based on

that material.

Now we will turn to a model free learning approach called Monte Carlo (MC) simulation. So

Monte Carlo methods are computational algorithms that are based on repeated random

samples to estimate some property, target property of the model. And actually Monte Carlo

simulations simply apply Monte Carlo methods in the context of simulations, so then Monte

Carlo reinforcement learning methods learns directly from samples of complete episodes of

experience. So this is a limitation this method is built on the analysis of complete one

complete episode starting with one state and ending in the terminal state. So Monte Carlo

method is model free, no explicit model of the transitions and rewards are built up, so MC

takes mean returns for states in all the sampled episodes. The value of expectation of a state is

set to the iterative mean of all the empirical returns of the episode. The two variants here

slightly different, so you know in one method you only consider the first time you come to a

new state because there may be episodes that passes state many times before it enters the

terminal but in the other approach you just select or measure data, make observations for

every state doesn't matter how often you visit them.

Here you can see an algorithm for first visit Monte Carlo every visit Monte Carlo version is

very similar it just modifies step four and in the middle of the algorithm, so it considered

States every time there you pass them not only at the first occurrence, for the rest the general

idea with the algorithm is you generate episodes using the current policy P and for each

generated episodes you go through the episode for each state, you conditionally add a return

item to the returns list, so in this returns list you will get as many items that you have that you

have States and then during all the iterations you successively calculate the iterative average

for all the returns in the list, and then of course in every round you set the value of the value

function of the state to that computed average or on the return, when you've done that for an

episode you will generate a new episode and you repeat it all over again until some

convergence occurs. And actually on the next slide you can see how we calculate the

incremental mean, but I don't have any more comments to that.

So here you get a simple example and that shows how the Monte Carlo simulation algorithm

actually works. It is just two states and you look at two episodes with a certain structure for

the rewards and the formalism is explained in this slide. So then you can see pretty detailed

calculation how things are done for the first visit Monte Carlo method, so that you can see

that you calculate the return for the first ten state in the first episode and then you calculate to

return for A in the second episodes and then you can see that the interesting item here is the

average of those, so then the volume function of our all becomes the average and they do the

same for the second stage and the similar calculation will happen for the every visit case, so

this is all very straightforward.

The last thing we will do in this part is to look at another formal model free learning which

called the temporal difference learning or TD. It's actually class of model free reinforcement

learning, which learn by bootstrapping from the current estimate of the value function, so

actually what this kind of algorithms does is that it's to take a sample from the environment

like the Monte Carlo situations and then perform a test based on current estimates like what

the window adaptive dynamic programming methods. So while Monte Carlo methods only

just estimate once the final outcome is known which means that you consider the whole

episode, so here the temporal difference method adjust predictions before the final outcome is

known. So actually adjusts the estimated utility value of the current state based on its

immediate reward and the estimated value of the next state, so actually it's in principle update

based on the relation to the next neighbour. So I assume the word term ‘Temporal’ is

motivated by there's normally a temporal relation when you move from a state to another and

you at the end you can see the updating equation, where you actually say that the value state

the new value state is the old value state, plus a certain parameter times the reward that you

get when you either take the step plus lambda which is this discount which always normally

have an in this situation, times the estimate for the next step Minus the state you are, so and

of course by choosing different values of alpha and lambda you can get slightly different

functionality here. Here so this lecture will be continued soon in part in the part 3 video.

Thank you!

