
[Music]

Welcome to the fourth lecture of the fifth week of the machine learning course, this lecture

will be about reinforcement learning, this lecture will be divided into three parts. So we start

today with part 1, the introduction. For the two first sub teams we have this so far discussed

this week Explanation based learning and Inductive logic programming,  these approaches

stems from a tradition of computer science and logic. What they have in common with what

we are going to talk about today is that they learn not in a vaccum, from a set of examples but

on  the  brink  or  border  of  a  reasonably  strong  like  already  existing  domain  theory.

Reinforcement learning the topic of today comes from another academic tradition, actually

reinforcement learning methods as I look like now were very much inspired and have been

growing out from a long tradition in control theory, but as for the other system we talked

about reinforcement learning is not learning in a vaccum, is actually learning on the border of

an existing system with an existing domain theory. The intuitive scenario for reinforcement

learning is an Agent that learns from interaction with an environment to achieve some long

term related to the state. The state is a state of the environment of course also with the agent

within it. So this iterative learning takes place as a series of actions on behalf of the agent and

by a systemic feedback from the environment on each action. And the mapping from States to

possible actions which means is actually what controls the actions in each state is called the

Policy. The achievement of goals is defined by Rewards or Reward signals, those being the

feedback on the actions from the environment. So this terminology is very important actually

it's  highly  recommended  I  would  say  in  this  area  to  try  to  really,  thoroughly  learn  the

terminology because these few basic concepts will come back and come back in all kinds of

forms when you look at very many different kinds of algorithms in this area. So apart from

reward  which  is  the  atomic  feedback  on a  single  action,  there  is  also another  important

concept or two related concepts, so in this area a lot of the work is centered around not just a

single action by this sequence of actions and sequence of actions we typically call episode

and an important concept then related to rewards is the accumulative to reward over an old

episode. So it's a sum not really sum because the way you aggregate the rewards can differ

but at least one can say it's the aggregated rewards overall episode, and that we call a Return.

An action sequence is the set of actions from a specific state to something we call a terminal

state and of course this has to be defined from problem to problem one means to be a terminal

state. So the goal of most algorithm in this area is to establish a policy, policy for an agent for

how to act so that it maximizes the returns across all possible action sequences. There are



many examples today about reinforcement learning, actually many success stories described

so on the front page you can see some slides really referring to the Alphago system (06:03)

which is one of the success stories where reinforcement learning, implementation actually

created a world champion level and Co playing program, also there are there examples on this

slide you can see a small robot that should manage to navigate the through a maze assuming

that this robot is provided with reinforcement learning system.

As I said it's highly recommended to really learn the terminology for this area because it will

simplify all further work. So let's now again go through that,  term by term so an environment

here is a micro world defined for the particular reinforcement learning problem including the

agent and many times when this is referred to and we use the letter E. Then we have an agent

often designated as A. State is a particular configuration of the agent within the environment

and typically here we use the letter S to refer to it. Terminal States is defined end States for a

particular reinforcement learning problem, so for every domain the terminals times have to be

clearly defined. And then we come to actions, so an agent selects an action based upon the

current state and the policy P, which is hat (08:11)and the policy P is a mapping from states

of the environment to the potential actions of an agent in those states. So policies can be

deterministic which means that the policy depends only on S or it could be stochastic which

means  that  the  policy  also  depends  on  a,  related  to  that  there  is  another  concept  called

Transition Probability Function which is actually the function from as an A onto a new state

S  prime and this specifies the probability that that environment will transitions to state S

Prime if the agent takes action A instead S. An episode also sometimes called a epoque is a

sequence of states actions and rewards which ends in a terminal state and the reward gives

feedback from the environment on the effect of a single action A in state S is leading to S

prime. Discounted reward is concept that means that when we calculate accumulate rewards

over a whole episode, we want to implement some intuition that what we do so early in the

sequence have more weight than that we do later in the sequence. So therefore we won't put a

kind of discount factor on the later steps and the action steps in the sequence, so typically the

discount factor lambda is a number between 0 & 1. The return is the accumulated reward

over an episode, so finally then the value function or is the estimation of the estimation of the

value or utility over state S with respect to its average return considering all possible episodes

within the current policy ending as always in terminal states. So this value function must

continually be re-estimated for each action taken. So finally the model of the environment to

refer to two things already mentioned is that the model of the environment is considered on



one hand as the relation,  the function T from S and A, to a new state S Prime. And the

rewards associated with all those steps.

To rehearse a little on the terminology once step more, we introduce a little example called

four times three world, which is actually a little table and it's a board of four times three

positions indexed by two coordinates, so the agent has a start position in one point 1, the

proposition two point two (2.2) is excluded it's like it's forbidden, there are also two rewards,

I mean actually that can be in reward for any step taken in this this kind of domain but in

some domains it's more common that you get a reward in the end, so maybe one can say that

two categories here there are these kinds of domains where you gather a reward when you

reach the terminal State or there are these domains where you get rewards more or less for

every step you take, so both those variants are possible. So here in this case you can see it's

it's one position for 4.3 that has a positive reward of plus one and there is no one another one

that has a negative reward or minus one. Actually there is no fixed rules for the ranges of

rewards, so that can be it's up to the designer and design for a particular problem, so for all

other reaching all of the positions give a reward zero. And the action is to move up down left

and right, of course the board as itself restricts what actions to that can be taken. So the policy

is deterministic which was already mentioned I mentioned earlier here so and just to repeat it

is I mean in the sense that every action in a specific take can only lead to one other state. In

the stochastic case one action can lead to different states and that can then need to be some

probability for in which state it's the same action and up with in. You can also see in this

example  some exemplification  of what an episode is,  and you can see what return those

episodes gives in the end, I mean here it's very simple because only the last step gives the

reward.

As I've already said there is a strong inspiration on the error reinforcement learning from a

trophy (15:19) or even if the definition or characterization of what reinforcement learning is

has been developed within the machine learning and artificial intelligence feel the kind of the

models used and the methods used bear strong resemblance to those traditionally used in

control  theory,  so  therefore  it's  not  surprising  that  the  way  of  describing  and  modeling

reinforcement  learning  scenario  is  inspired  by  such  one  model  coming  from the  control

theory field which is Markov decision process but we here abbreviate MDP. So in a Markov

decision  process  we actually  then  have  that  kind  of  setup  that  we  more  or  less  already

described for reinforcement learning, so we can say that an MDP is like a 4-tuple of state or

States, actions, rewards and transitions where S is the set of states, A is the set of actions



possible for each state that the agent can choose from defined by a policy P and then we have

the reward function which is their feedback or on each action leading to some other state and

then we have a transition probability function specifying all these probabilities from S to state

S given in action A. And there is one thing that there is important to note that the coupled to

this model is this assumption that when we look at the probability, the state probability we

can forget all the paths that led to this state, so the Markov property says that the transition

probabilities depend only on the states, not on which path that led to that state. So also in this

kind of framework we have the goal for all kinds of algorithm with this is to find policies P

that maximizes the return, which is the expected future cumulated possibly discounted reward

for episodes starting from one state and moving to a terminal state and to the right you can

see an exemplification of the state and she said well you see the probability is just an example

of probabilities or specific, for a specific case yeah and it's exactly the same example that we

looked at and this four times three board example.

So now it's time to come to a very important distinction for this area. So in one MDP scenario

and I would say this default one, we have a complete an exact model on the Markov design

process, in the sense that the transition function from states and actions to new states and the

reward function  from states  and specific  action  are fully  defined.  So as  also  the various

domain description available that that can completely specify those two functions or relations

and so in this case where we have complete  knowledge available the MDP problem is a

planning problem, that can be exactly solved by use of example techniques like dynamic

program. However in many cases these two relations T and R are not completely known. So

this means that this information is not available from the domain with meaning that the model

of the MDP is not complete, and this case is that what we truly call reinforcement learning,

that the complete case is more of a standard problem in control theory which can be handled

by standard  techniques  like  dynamic  programming and is  essentially  a  planning problem

while the case but with not complete knowledge is a learning problem.

As a reference point let us first look into how the case with complete knowledge is handled

so that  we have a  reference  point.  So as  I  said the  standard technique  for  handling  this

situation  is  called  Dynamic  Programming  which  is  an  element  design  technique  for

optimization  developed  by  Richard  Bellman  in  the  1950s.  So  like  divide  and  conquer

dynamic  promise  simplifying  a  complicated  problem  by  breaking  it  down  into  simpler

subproblems in a recursive manner combining the solutions to the subproblems to form the

total solution. If a problem can be optimally solved by breaking it recursively to subproblems



and then form the solution from optimal solution to the subproblems then is said to have

optimal substructure. However there are other ways or methods for breaking problems into

pieces  like  divide  and  conquer  in  that  case  the  problems  are  supposed  to  be  totally

independent in dynamic problem and can allow subproblems to be to some way to in some

sense  dependent  on  each  other.  So  this  way  of  thinking  about  reducing  a  problem into

subproblems also affects the way we think when we want to estimate, for example the value

function, the utility function of a certain state in a Markov decision process. So typically we

define the value function recursively in terms of the value function for the remaining steps of

an episode, and also typically we do the same when we find a way of calculating estimate

some of the policy function needed. There is also an important equation that defines what is

an optimal value function in this complete knowledge situation and that equation is called the

Bellman equation.

Before  we continue  I  must  tell  you a  funny story,  not  so long ago somebody asked me

actually why is this method called dynamic programming, and then I had to say I don't know

actually I always accepted the name I just know what it is but then because I got the question

I really tried to search for the reason behind the name and then funnily enough I found this

little piece from some old article, actually professor Bellman himself in the 50’s wrote that

you know the reason I worked on a project sponsored by an by the US military and at that

time it wasn't really popular to do something very theoretical or if you had funding from the

state especially from the military, so therefore you always had to defend what you do so it

useful for the purpose you were funded. So actually as this story goes, Bellman choose the

name that looks very supposed to be look very practical so we couldn't be accused of doing

something theoretical or – mathematical. So that explains why maybe this name is a little

difficult to understand the relevance of.

So the main principle of dynamic programming as a way to recursively divide up a problem

in  smaller  parts  and  take  the  solutions  to  the  smaller  problem  to  the  subproblems  and

combine them to the solutions of the larger. So this way of thinking also them affect the way

we run in dynamic programming plan the calculation of the various important functions. So

as you can see here there are two functions of value function and the policy function, and

both these functions are defined in a recursive way. So this means that the value function our

state S is actually the sum of all episodes starting in S but of course via different actions

leading to other states as S Prime, actually taking the probabilities for going in these various

directions but for each direction take the sum of the reward for taking that direction add the



discounted value of the value function in the new state. So you see you see you start from the

discounted value of the state you're going into, you have the reward you multiplied by the

probability to get the full picture, and in a similar way you do with the policy function now

the thing is for the policy function you want advice on which argument to take, so therefore

logically you look at the same kind of expression, the value function but you want the R max

which is the A, that gives the position and the action A that gives the highest value of the

value function, which is the reasonable action to take. But also this then equation have this

recursive  structure.  So  then  we  come  to  something  called  Richard  bellman  principle  of

optimality so that says that an optimal policy has the property that a variable initial state an

initial decision are the remaining decision must constitute an optimal policy with regard to

the state resulting. So whatever step you take initially still in order to get something totally

optimal,  even  the  rest  must  be  optimal.  On  coupled  to  that,  we  also  have  the  Bellman

equation, which is an equation for specifying what could be an optimal value function and as

you see for that the structure of that also is the same recursive structure.

Just because via Bellman equation have an equation that gives the criteria  for finding an

optimal solution it doesn't matter mean that we have one, so what remains is to find methods

that that solves the bellman equation. We don't have much time to go into this at this point, so

on this slide I roughly mentioned a few variant approaches something called Value Iteration

where we actually through a simple procedure iterate the values, or policy iteration where we

do the same for the policies. Actually it's always the case that if you have a you can always

infer one from the other, so if you have an optimal value function it's pretty straightforward to

infer  an optimal  policy and vice versa.  There are other  techniques  you can use as linear

programming, but we will not go more into this. I will know shortly introduce to you a simple

example to illustrate the thinking of dynamic program, so this is actually not reinforcement

learning, it's just an example to illustrate the recursive style of reducing larger problem to

smaller problems and then combine the solutions, so this is actually a graph and every edge

as a value or a weight and you can say it's a distance here so the task is to find the shortest

path. Actually as you can see here one can easily see in this simple example the shortest path

is nine, but if you have a general problem you need a method and for example if you have a

greedy method the greedy method always starts  where you are  and take  the best  choice

locally, but never backtrack. So in this case for a greedy method you take one from S you

take the edge we wait one you come to A the then you will take the edge with weight 4 but

then when you come to D you only one way to go and unfortunately you take it and need to



take an edge with weight 18 so then you will go with a with a total weight of 23 which is

absolutely not optimal at this point. However what you can see on the next line is that the

dynamic programming approach is not greedy, it's rather more like breadth-first so actually

what dynamic programming does is systematically in parallel checks all paths recursively,

and actually  dynamic  programming  in this  case  well  in  contrast  to  the greedy algorithm

provide you with a good approximation.

 So what we will do for the rest of this lecture is that we will accept that for the case where

you have full knowledge you can use dynamic programming and techniques related to that

but for the other case where you don't have full knowledge you have to rely on other methods

or  maybe  reduce  them to  a  problem where  you  have  full  knowledge  and  then  you can

continue. So we will not make an attempt to generalize the Markov decision processes in a

direction that makes them more useful to the case where your lack full knowledge, however

there are such extension and on this slide you can see one such attempt so it's called partially

observable  Markov  decision  process  and actually  what  the  extension  is  very  simple  but

because you also introduced you notion of observation, so apart from getting a reward at

every state  an agent  also can make an observation which is  then a partial  picture of the

environment, actually it turns out but if you introduce this you this kind of model is more

useful also for the case with not complete knowledge but for time reasons we will not go into

this sidetrack either. So this is the end of part one this is soon to be continued in part two

thank you


