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Welcome to the third lecture of the fifth week of the course in machine learning this lecture

will be about Inductive Logic Programming. Inductive logic programming abbreviated ILP is

an efficient attempt to marry together the area of logic programming with techniques from

machine learning establishing what one can call learning with logic. One of the big advantage

here with this mission is to create that kind of framework in which you can easily express

both deductive and inductive impresses in a very uniform way. So if we look at the two main

forms of inference that first deduction, when we actually apply rules to facts and then can

infer other facts it's a very traditional way and this kind of inference it is a cornerstone of

what you do in logic program so actually we do not have to worry about that. The new thing

with inductive logic programming is to see to that we can also make inferences the opposite

way that we can start with just the collection of facts and from those facts infer some rules

given of course as you hopefully have understood that it will only have some credibility, if

we handle a reasonably large amount of instances or data items to work from. Inductive logic

programming, the goal of ILP is to find hypotheses expressed as logic programming clauses

from a set of positive and negative examples and in the presence of a domain theory where

the latter two also are expressed in the same logic programming formalism. So what we have

given is a set of positive and negative examples expressed in this observation language we

call LE, domain theory T, hypothesis language LH that delimits the clauses that allowed in

the hypothesis space H and our relation covers, covers is important because covers is the

means for us to decide whether a certain hypothesis covers a certain entails a certain example

E, considering also the background theory. So given these pieces, logic programming has the

aim to find hypothesis H that covers all positive examples, no negative examples. So we can

say that the learning goals of inductive logic programming expressed in this way is extremely

much aligned with the learning goals for all  other kinds of inductive logic programming.

What is not covered in this is of course, the basic capabilities of logic programming as such,

which from the start enables deductive reasoning, all executions of a pure logic programming

can be regarded as an instance of deduction. So I say this because if you only define inductive

logic program as inductive, you forget the deductive side and one of the big positive things

with this area that the combination is made possible.

Let  us now talk about  some of the main advantages  of ILP, actually  the most  important

advantage is that by using the same framework the language of logic of logic programming.

It's possible to express examples, hypotheses and domain theory or background theory in the



same language.  Also  the  second  thing  important  thing  is  that  one  can  handle  deductive

inference and inductive inference within the same framework. Because of the ability for logic

programming to support structured data types and multiple relations in a convenient way, it

also makes ILP by inheritance from logic programming, also very suited to handles domains

where there is a need to conveniently describe complex structures. One example of that is

chemistry and the complex chemical structures that many applications demand. One thing

that  maybe  is  not  the  biggest  advantage  because  of  course  many  other  systems  and

approaches of similar features is that some ILP systems also have the possibility to invent

new predicates and add them to the domain theory, so this is this dynamic property that you

also can introduce here.

As have been said, the nice property of inductive logic programming is that everything is

represented in the same way. So this means that hypotheses or examples, facts everything in

in a way are in the end represented at logic programming clauses. So at the core of inductive

logic programming are the rules of specialization, relation and generalization. And these two

rules or relations connect hypotheses and facts. So one can say that hypothesis let's call it G is

more general thank hypothesis S, if an only G entails S. And then S is also said to be more

specific than G. So there are two then kinds of other relations that are used in different way,

so let's start with a so-called specialization rule or specialization relation. So if you have a

deductive inference rule R, that map's a conjunction of clauses G onto a conjunction  clauses

S such as G entails S, this is a specialization rule. And the typical rule in inductive logic

programming of that kind is called Theta subsumption. If we set up hypothesis space and

structure that space using the Theta subsumption specialization relation, this search space will

be  a  lattice,  and  for  every  pair  of  clauses  under  the  specific  conditions  of  the  Theta

subsumption that will exist at least upper bound and the greatest lower bound with respect to

the Theta subsumption relation. So it's a pretty well ordered structure. In this context what we

talk about is inductive process that starts where we start the algorithms from the top, so we

start with the most general hypothesis and this hypothesis can then be specialized in order to

finally reach the facts. The opposite direction is the generalization, where we essentially start

bottom-up and that so there we have a similar generalization rule. The typical ILP rule of

general  size  and  type  is  called  inverse  resolution.  There's  also  some  variants  of  that

something inversion entailment, but essentially for that for given how much we time we spent

on this  topic  and it's  fine without  one example  of a top-down and one of the bottom-up

operation.  And  in  the  same  fashion  a  typical  generalization  rule  like  inverse  resolution



establish a least generalization entity from positive examples. It's important to realize that

that in this context of inductive logic program induction is viewed as the inverse of deduction

as far as possible. So that the basis for the way of setting up algorithm for designing the

algorithms and finally one comment is that in inductive logic programming the view of the

process of induction is a search process. So this means that what happens in an inductive

logic programming, induction process is that we search for the appropriate hypotheses but in

a search space structured through the generalization and specialization relations, so therefore

we when we design an algorithm we have to marry together  the properties of the search

algorithm and the prompt and specific properties of these relations.

We will now look at what is termed here the Generic ILP algorithm so first it  should be

repeated again, that inductive logic programming views thus the establishment of hypotheses

as a search process. So there we of course always have our standard search process could be

depth first, it could be breadth first, it could be best first, it could be anything. Okay, so that's

the baseline, so all algorithms will be somehow phrased in a search process context. Secondly

I already said that we have two kinds of main generalizations that we use for structuring

hypothesis space. So we have a generalization and we have a specialization relation, and the

generalization is more relevant to use in a bottom-up perspective,  in a bottom-up process

when the specialization is more relevant to use in a top-down setting. This algorithm that

we're  going to  look now should potentially  be able  to  work in  both settings.  So in  both

settings we somehow initialize the set of possible relevant hypotheses. Naturally if we have a

top-down approach we would probably instantiate to the most general hypothesis as possible,

while we have a bottom-up approach we will instantiate hypothesis with actually the data

items of the case we handle. But this algorithm describes very simple iteration where in each

stage of the algorithm we take an take hypothesis from this list of hypotheses and we apply

the inference rules, that we have chosen to and as already said for top-down is typically Theta

subsumption and for bottom-up is typically inverse resolution, so those are the typical choices

in inductive logic programming, But anyway independently of what we choose we transform

this list of current hypothesis through systematic apply and the shows and inference rules in

one of the other direction, but in each step after we generated a new set hypothesis it may be

so that we invented - too many or redundant or irrelevant hypotheses, so therefore in every

cycle there is a proven step when we're using some criteria design to prove some of their

processes in the list. And actually then this list goes on until some stop criterion is satisfied.

On this line we seem clear elaborate a few of the items mentioned in the algorithm, so as



already stated there are a few dimensions here first is the direction of the process whether it's

top-down  or  bottom-up  and  that  of  course  influence  how  we  initialize  and  hypothesis

differently if we start top down and in bottom up. Also that influence the choice of operation

inference  rules  or  operations.  So  furthermore  there  is  also  another  distinction  for  every

algorithm we have to decide on which kind of basic search strategy we apply. So we can go

for depth first we can go for breadth first we can go for best first and etc. And actually it turns

out that as this algorithm is designed or written,  it's  actually two places in the algorithm

where our actions or choices decide controls, the search strategy that we actually plot. So

actually  by the  design  of  how what  we do when we take  away hypothesis  delete  and I

processes to expand it and also what we do when we actually do exactly when we proven

something, that combined choice we control what search strategy we will have so with so

with certain actions in these places in the algorithm we will get a depth-first search strategy,

otherwise we will get the breadth-first and so on.  So final comment on this line is at the stop

criteria of course your state when we should finish and actually the most natural thing we

start when we the main thing main condition under which we stop is that we achieved at least

one hypothesis in the hypothesis layer style that is good enough.

There  is  one  point  in  the  algorithm  after  the  point  where  we  actually  transformed  the

hypothesis  space  in  each  iterations  based  on  an  expansion  based  on  generalization  and

specialization operate, so we've got a new set of hypothesis. So than actually at that point we

are supposed to look into whether it's possible to prove the hypothesis set. So there are two

main criteria we could use to decide on what to prove. So the first case have to do with this

space we have hypotheses that actually do not cover all instances, which means that it's too

special, it's not general enough. So each hypotheses we have is not general enough and but in

our set we have other hypotheses that are specializations of this one, then it's not meaningful

to pursue them because the first time positives we talked about it's not general enough. So

more special hypotheses then that one is not meaningful to keep. And similarly if we have the

situation that the hypothesis we have is too general, which means that it also covers some

negative instances, then it's already too general. So therefore if we have a generalization of

this hypothesis, it's even worse so it's not meaningful to keep either. There will be also other

criteria but these I think are the most primary ones to consider at this point. And we also had

a stop or termination condition in this  algorithm, so actually  the question is when do we

naturally stop the iteration. So one attempt which I will be in this slide to define something

correct hypothesis. So then given that when I've defined that one can say that a natural stop



condition for finding in hypotheses is whether if you have established one correct hypothesis

among your hypotheses. So a definition of correct hypothesis here is that it  satisfies four

requirements, so first such hypotheses should be sufficient in the sense that it covers all the

positive examples we have at hand. It should also satisfy the requirement of necessity which

means that if we take it away not all positive examples are covered by any other hypothesis

so therefore it's needed we will not have coverage without it. The third requirement is weak

consistency. It means that the hypotheses do not contradict any element of the domain theory.

The last part is strong consistency, which means that their poses are not consistent with the

negative examples. So if I follow this satisfies all these requirements we will call it correct

and then it could be a candidate for being that the combined criteria could be candidate for

using for termination criteria. 

Let's  now look at  a few examples  so the first  pretty short  example is about that  kind of

algorithm because it's based on generalization and this means that means bottom-up process

where we use inverse resolution as the main generalization operation. So in this case we start

from the facts, so we start from the facts that we have in the case. So father, adam. Adam is

the father of Kain, Adam is male, Adam is the parent of Kain and so on. So we use these facts

to infer the new rule father is implicated by male and so and as you can see it's natural to see

that as an inverse resolution because at the top you can see the example of a revolution where

father simply by a male, male adam will make us conclude that Adam is the father of Kain.

Okay,  if  we  look  in  the  other  direction  now  the  top-down  direction,  the  specialization

operation is the Theta subsumption typically, so what is exemplified, here first we take it for

propositional logic is that you can see that the hypothesis space naturally for a very simple

case in propositional logic, the subsumption operation generates a lattice and also you can see

that every man every element in this that is every pair of elements in this lattice has a least

upper bound and it a grade is lower. So this is a very neat structure, as you can see in the next

slide it's the same case, this also works for predicate logic, so for logic programming we will

end with structures that look approximately like this. 

To compare the top-down and bottom-up approaches let's introduce another example. So here

we have a simple example we have an hypothesis which is bird X, we have some positive

examples like that penguin is a bird, eagle is a bird, sparrow is a bird,and then we have some

background knowledge saying the penguin,  a sparrow and eagle lay eggs as all  birds do,

however only the sparrow and the eagle flies and only the Eagle has talents. So then if we

first look at the hypothesis space, for this example from a bottom-up perspective where we



have inverse resolution as the relation that defines the structure, so you can see here that an

eagle being a bird is defined by the close at the bottom. Bird X is lays eggs, flies X and has

talons. While bird sparrow need to be an instance of the more general concept part of eggs

with lays eggs and flies and so on. So by static by the facts the general algorithm would

construct hypotheses within this space if we the same fashion look at the top-down search on

the Theta subsumption,it will just be reversed. So hopefully this simple example can give you

a  flavor  of  the  basic  structures  that  always  have  to  underlie  the  inductive  processes  an

inductive logic programming, independently of whether they are top-down or bottom-up.

I want to wrap up this lecture by first giving you some examples of ILP systems and then

gave you two examples of important application areas. So first ILP systems, so you get four

examples here FOIL, PROGOL, Golem, and Marvin. Actually two top-down approaches and

two bottom-up  approaches  and  as  you  also  say  they  represent  different  kinds  of  search

strategies, so Foil and Golem are hill climbing while PROGOL have implemented the best

first search. Probably the most well-known systems of all these are FOIL and PROGOL.

When we talk about application areas those two strongest application they have an inductive

logic  programming so  far,  is  actually  in  natural  language processing  and bioinformatics.

Maybe  not  surprisingly  so  because  these  areas  we  have  high  demand  for  being  able  to

represent complex structures. So therefore logic programming provide a very good basis for

both describing the examples, hypothesis and the domain theory, and want to say there have

been few success stories in this areas over the years. This was the last part of this lecture

thanks for your attention, the next lecture five point four will be on the topic of reinforcement

learning thank you.


