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Welcome to the second lecture of the fifth week of the course in machine learning. So as you

know this week we will focus on machine learning techniques enabled by prior theories and

the topic for this particular lecture is Explanation Based Learning. Explanation based learning

abbreviated EBL is a machine learning technique where we try to learn general problem-

solving  schemata  by  observing  and  analyzing  solutions  to  specific  problems.  So we  are

interested in how this can be done in machine, but it should be obvious to you that this kind

of technique on a conceptual level also is very much relevant for the way we learn as humans

in everyday life, and this is illustrated in the very rather famous cartoon to the right where the

these three guys looks at their friend and see what he does and probably at the later stage will

abstract  from  that.  Explanation  based  learning  creates  learning  general  problem-solving

schemata  by  observing  and analyzing  solutions  to  specific  problems  and EBL spans  the

spectrum of inferences from deduction to abduction, however I would say that if we look at

what's particularly interested by explanation learning is his ability to formalize abduction.

And in this process one uses prior knowledge to maintain or explain why training example is

an instance of a concept, and where that generated explanation as one thing identifies what

features are relevant to the target concept among potentially many features described for the

problem situation.  Prior  knowledge is  used to reduce the hypothesis  space and focus the

learner  on  hypotheses  that  are  consistent  with  that  background  knowledge  and  typically

accurate learning is possible even if we have only very few instances even a single instance

could be possible.  There  is  a  trade-off  here obviously between the need to  collect  many

examples to be able to induce which we are typically done now for some weeks without prior

knowledge and/or the ability to explain single examples in the presence of a strong domain

theory. Let us try to describe the exact scenario for explanation based learning algorithms. So

given is a target concept defined by some predicate statement, also as an input to this kind of

algorithm you have training examples typically a few, you have a domain theory which are

built  up  from  facts  and  inference  rules  that  express  background  knowledge  potentially

relevant for the target concept. Probably most cases you have more background knowledge

than  you  actually  will  use  but  of  course  it's  not  optimal  to  have  too  much  background

knowledge because then you have the problem of choosing the right subset, and finally there

should be an operationality criteria which specify which predicates can occur in the right

concept definition. Typically the predicates are those used to the training instance case. So

actually we do not want to define hypotheses that are too general in the sense that these the



definition of those concepts are expressed in such terms, that they are not operational in a

domain specific context. So the goal could be refreshed to find alternative operational more

efficient definition on the target concept that is still consistent with logic entailed by both the

domain  theory  and  training  examples.  So  typically  we  have  some  definition  but  rather

abstract of the target concept and the idea here is to specialize it. Also typically and (this kind

of algorithm has the following steps ,so first you have a step to where we explain, by which

we mean that we can also more or less say we build up some kind of inference chain or proof

on why this example actually should be a member of the target concept we're interested in.

And then the idea is that when we look at that explanation or that chain of inferences, then

that can then be in the beginning be pretty concrete in terms of the example term or the idea

is to generalize that explanation in transgene (06:28) To define the most general rule but still

being operational in the sense that we express ourselves in that kinds of terms or predicates

that we have defined as being on the operational level. And finally if when we created this

new definition  of  this  concept  we can  add that  to  the  domain  theory.  So the  idea  is  to

incrementally augment the domain theory for each round in this EBL iterative process.

I want to say a few words about different perspectives can have on what EBL actually means.

So one perspective which is that the closest one to the mainstream or in in inductive learning

techniques  is  as  Theory  guided  generalization  of  examples.  So  essentially  we  have  an

induction  process but  we guide that  process and we focus the search for the appropriate

hypothesis by using the theory. And as part of that which is always important is of course that

the explanations we built should be as simple as possible so we should use as few features for

example as possible, but still being able to explain why the example is an instance of the

concept. So that's one perspective that is more close to the inductive machine learning string.

Another perspective is us example guided reformulation of theory, so then we can say we

start more from a theory and can be the case that the have a theory this is over general that is

not consider operational in the sense that it's effective to use for problem solving in a domain.

So what we want to do is to specialize the theory so it becomes more operational and then we

can  do  that  by  looking  at  these  examples  and  the  examples  can  guide  us  in  which

specializations we should make .

The third way of looking at EBL which now we move more and more actually by a step by

step  in  this  little  list  of  perspectives  into  the  detective  realm  so  we  can  view  EBL  as

knowledge compilations, so actually the domain knowledge is complete enough to perform

some reasoning for specific cases but what we can do with through EBL is to simplify this



inference change, so they've become more efficient in in particular case. Then one can of

course question whether that is learning or not, because the competence in there to solve the

problem, the only we do is that we learn problem-solving skills to become more efficient. So

on this line you can see some graphical depiction on what I hopefully have expressed earlier

that what we really do in EBL is we try to flatten the structure, the chain of inferences so in

same  instance  of  expressing  the  problem-solving  through  a  rather  complex  chain  of

inferences we can express ourselves in a more flat structure, which is actually always more

efficient often more efficient. So here on this slide you can see a little picture, the purpose of

that is to give you a feeling for the components of an EPL system, so I think central is you

have some kind of problem solver and you specify a case and then you have this we have this

knowledge base which is actually background knowledge plus some rudimentary hypothesis

relevant for the case we there is a explanatory process in where we try to actually solve we

can say we can try to solve the actual problem using the knowledge base, and that generates

an explanation or some kind of inference chain, and then that inference is generalized and

when in generalized and we have a new more general concept definition we had that concept

definition to the knowledge base we get a new problem and so on and so on.

At  this  point  we're  going  to  become a  little  more  formal,  and  we are  going  to  look  at

specifically the generalization part of the explanation based learning algorithm, and actually

and as  you remember  from one of  the  earlier  slide  where  I  showed you an  hierarchical

structure and a flat structure. So roughly you can say that a typical explanation that we start

from in the concrete form is a hierarchical structure where with a lot of inference depth that

are based on specific rule application. So really what we want to do here is that from that

hierarchical structure we will create as flat structure as possible. Yeah however of course we

want the new structure to still correspond to a valid proof, the valid proof we started from. So

this means then we in transform their article structure to the flat structure we must also see to

that  there are  appropriate  connections  among all  variables  and constants occurring in  the

original concrete explanation or proof and actually when on this slide the word literal is used

is actually literal just a common term for four could be a constant it could be a variable so to

say. So actually what we need is a machinery that do this advanced pattern matching which is

called Unification which sees to that we do with the appropriate binding of variables and

constants or variables or variables which is then called unification. So that's an important

thing in ingredients in this. So essentially when we if we want to look a little informally on

the algorithm that is described on this slide and you should always have in mind that we start



from hierarchical rule application proof and what we went in the end is a flat structure, so you

can see on the last row that is a variable called P which is actually a list of predicates, so

essentially these predicates or literals are collected during the process and essentially the end

result as we want to set our target concepts equal to this flat list this conjunction or predicates

so that's the end. So really what happens in this algorithm is that we iteratively build up this

list  and  we  actually  do  that  through  a  process  where  we  take  the  target,  we  target  the

predicate and as it is expressed here regress is true each rule on each level through the proof

structure, always then involving this unification algorithm that it sees to that the variables and

constants are unified together in the appropriate way. So this is intuitively what is described

here and I hope you can look at a little in more detail, we'll also I will also show you an

example  and in the coming slide.  Here we will  look at  a simple example,  actually  it's  a

problem where we look at boxes and that can be put on a table and there you can put on each

other and actually the target predicate we want to look at in this example is whether it's safe

to put one box on the other and then there are a number of these predicates who say whether

they are light or not if we try to define light in terms of their weight, we which are try to

define their  weight even the in terms of their  volume, we can also say that one of these

elements we have is actually it constitutes this table and so on. So we have a little domain

theory that describes these kinds of boxes on their property including the table. And then we

also have a list as I already mentioned it typically for this kind of methods of operational

predicate, this means that those predicates we are allowed to use in our final target definition

of the goals concept. Then we have a training example which is actually the situation where

we have two objects and the properties of those objects and then finally we have the target or

goal concept that is with this case this predicate expressing whether it's safe to put one object

on the other. So this is our domain theory in this case here and now comes the concrete

explanation  which  is  then  the  chain  of  inferences  through  which  we  motivate  why  this

particular configuration of two objects with this particular kind of features are such that they

can safely be put on each other, and as you can see his tree hierarchical inference structure

use a certain number of the rules from our little domain theory. What we do now is actually

that we go through the structure we saw a radical one and actually we start from the top with

the goal predicate and then we start what was termed in the description of the algorithm as

regressing that that predicate through this proof structure, and we start from the top and we

take it level by level. So here we can say we look at the first step, the connection between the

SageToStack and the lighter predicate. And we take a step in that way we find appropriate



unifier and we build up start to build up our P variable which is actually the list of predicate

that we in the end should form our final result but at this point it has only one element.

Here you can see step two, so we take the second level where we reduce lighter into the

simpler predicate and we do the same we take that we take that predicate and regress that

through this this segment of the proof structure with appropriate unifier and then you can see

how the P variable is built up with an asset the repertoire of consistent variables ethics as a

secured by the unification algorithm. You can see the third step in a generalization process

and which goes in exactly the same fashion and you can see then in the end that P variable

continues  to accumulate  the relevant  predicate  with the appropriate  variable  bindings and

then there is a last step and then at the bottom you can see the final P variable and so now this

regression process is over and actually we only now have to set the target predicate equal to

this conjunction of predicates collected during the process. 

EBL is of course very much related to the kind of theory background series we work with and

the quality of those theories I mean for this kind of toy examples we looked at is it's like we

have a theory that is complete even if it's small and they have one little corner we have one

target concepts which we want to operationalize, so it's very well-defined but in general of

course there can be all kinds of properties of domain theories all kinds of imperfections so

they can be incomplete they can be inconsistent, they can be incorrect, incorrect here means

that the theory is consistent internally but the theory does not match reality. So anyway when

I say it's wrong because it's not a good model of domain we want to make a model for but it

can also be intractable because it's so computationally complex to handle and of course there

are two way reasoning here so EBL techniques can of course be used to make theories better

to complete what is incomplete and so on, but also of course other kinds of imperfections of

theories can also disable the EBL algorithms, the function of the EPL algorithms. So the

message is here that that EBL is not a general technique that can be used in a very simple-

minded way for all possible domains theories. Actually in order to be useful the use of EBL

techniques  must  be  must  be  prepared  for  by  a  careful  analysis  of  the  available  domain

theories and the properties of those and some prognosis of the kind of imperfections they

have and then making some clever choices of what kind of imperfections could be fixed

using these techniques and also being sure that are not other improve imperfections that can

that can hinder or complicate the use of the techniques. 



Another issue that I want to discuss a little is the utility of the created new operation concept

definitions or rules that we handle. EBL in many cases do not create entirely new knowledge

but as rather the goal to improve the domain theory so that the problem solving becomes

more efficient. So one way of looking at EBL is as knowledge compilation, of course one can

always discuss what is learning is this learning them because it's not new knowledge is just

becoming more efficient on the other hand, if we look at ourselves a lot of the time when we

say that we learn something is that actually that we learn to become more efficient in doing

things. So it could be of course a battery of debate where we are in on the borderline between

planning and learning. But in this perspective EBL represents a dynamic form of knowledge

compilation  or  a  system  is  tuned  to  incrementally  improve  efficiency  on  a  particular

distribution of problems. So it's not so necessarily that the system becomes more efficient for

all problems because we started with a more general theory and then by handling a series of

cases we in a way optimize the system for that particular sample of instances. It's also the

case if we learn many new rules many of these new operational rules we can call our macro

operators, macro rules, search control rules, the terminology is pretty complex here, and it

can also be so unfortunately that to add more rules to the system in spite of the good purpose

we had will  deteriorate  the  problem solving efficiency.  So that  the  amount  of  generated

additional rules outweigh the benefit that we were after. But of course as always we can come

up with countermeasures so we can be more careful in our selection of rules to store, we can

also see to  that  sometimes  we throw away rules  that  are  rarely used.  So by making our

algorithm more complicated we can anyway fight this phenomena that the growing rule set

deteriorate performance.

EBL systems is it's not a new invention, these kind of systems have been built for a very long

time and you'll find on this line a list of examples and for example if you look at the earlier

systems, one famous system this combination called STRIPS+MACROPS is very famous

planning  system  from  the  early  1970s  which  actually  also  in  on  top  of  its  planning

performance had had had a capability to building but what was called at that point as macro

operators. Also the hacker system were by Sussman at MIT was from that time and both of

this system if we look at what really happened was very very very similar to what we now

call explanation based learning. So one can say that the evolution of the term explanation

based learning was really starting more or less in the mid 1980s where there were a number

of papers one of them is mentioned here by Mitchell Keller and colleagues where they try to

give  kind  of  create  an  abstraction  for  this  kind  of  systems.  So  you  will  also  get  some



reference to some of these systems in the recommended readings. This was the end of the

lecture on explanation much learning. thanks for your attention we will now turn in to the

news next subtopic inductive logic programming which will come up in in the next lecture

thank you.


