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Welcome to the second part of the lecture 4.4 on instance-based learning. I will now talk

about something called Distance Weighted Nearest Neighbor Algorithm which is actually a

pretty straightforward extension of the k nearest neighbor classifier, and if we consider that k

nearest neighbor classifier can be viewed as assigning the k nearest neighbors a weight of 1

and all others await all 0, the natural extension is to also weight the nearest neighbors, that is

that the ith nearest neighbor is assigned weight wi from I =  1 to k, where k the number of

neighbors we consider. So normally one have to define a specific function that computes this

weight, one where are the common choice for that function is to take the inverse of the square

of the distance between the instance to be classified and the training instance in question, but

this function could also be some of those kernel functions that we will described a little later

in this lecture. So then there are two cases of course as for the k nearest neighbor algorithm,

so we have the classification version where the output is a class membership, so actually then

what happens is that the query instances assigned the class label most common, amongst k-

nearest neighbors but where the vote of the each neighbour i is weighted with wi. So it's not

an  equal  vote  for  the  weighted  vote.  So  in  k-NN regression  where  the  result  should  be

property value, so we calculate this value as the weighted sum over property values divided

by the sum of the weights. So it's pretty straightforward extension from the normal k, nearest

neighbor case. It's also possible when you weight that you consider to extend the k nearest

neighbor from k to all data items, I mean this means that you would consider all data items in

this process. So one can say that two versions here of the nearest neighbor that you keep to a

normal k number like in the original algorithm, we call that a local weighted method or we

can extend this to all data items and  we call this method the global weighted method. So the

normal weighted nearest neighbor algorithm can handle both classification and regression,

however in both cases the algorithm approximated target  function for one specific  query

instance,  that  means  for  one  point  in  space.  So  we  have  another  concept  here  Locally

Weighted Regression which is actually where we extend this approach of regression from one

point to a surrounding around a query instance q, and if we look at the term so there is a

reason why it's called local, because we do regression not over the whole space but we do

regression based on data near to xq. And of course we still keep the word weighted here and

that the contribution of the training instance are weighted based on the distance from xq. So

the weights are defined typically by a function and as you will see we will call this kind of

function  a  kernel  function,  but  actually  generally  it's  a  function  where  the  weight  of  an



instance the contribution of an instance is weighted and the weight is higher close to the new

instance and it's further away, and so and one can say that the kernel function moderates the

original  distance  measure  that's  why we're  looking  at  it.  Regression  of  course  is  natural

because we still aim at approximating a real valued function. And this function could be how

any kind it could be linear, it could be quadratic etc. and you see in the picture below an

illustration how this will look like where we have a certain point and then when we have

some kind of weighted curve that determines the importance of the surrounding items. So a

kernel function is a concept imported from nonparametric statistics and when you say kernel

is  a  window function  that  it's  defined  over  a  certain  window when the  argument  to  the

function is a distance measure one can say that the kernel function is a moderation of the

original distance measure which means that the effect of the distance is moderated. A kernel

is  normally  a  non-negative  real-valued  integrable  function  and  for  most  applications  it's

common to define the function, also to satisfy some other constraints, for example that the

integral over the whole area beneath the function is 1, so the area is always 1 and also that the

function is symmetric with respect to 0. And there are a lot of these functions and they are

exemplified in this graph and I can say that for all of them apart from the uniform one, we

can see the decreasing weight or importance for points or for distances further away from the

center.  I  also  want  to  mention  another  approach  to  instance-based  learning  there's  that

connect to what we talked about here kernel functions. So kernel functions are also useful in

a kind of weighted instance based learners called Kernel methods. The kernel function here

serves  as a  similarity  function,  this  kind of  method typical  computer  classification  has  a

weighted sum of similarities, actually here with this approach the class label are modelled as

+1 and numerically as plus 1 and minus 1, both for the class label of the training instances

and for that output down labelled instance xq. So in this approach it is also assumed that there

is a the weight allocated to his training example on that and you have this function k that

measures a similarity between any pair of instances, and in this kind of approach this kind of

function is called the kernel function. And so what we do is we with sum number of terms

where term it is the weight of an instance a certain instance, the classification has certain

instance which plus minus 1 and this kernel function between the target instance and the

selected training instance. And then we take the sign of that sum and that sign and the sign of

that sum becomes the class label of the target instance. So this is a pretty old method it was

the first instance of it was invented many years ago in the 1960 and was termed the kernel

person drop.(10:56)



Now we will switch to a few other but related topics as you may have already understood

machine learning is a pretty complex field and there are many concepts many approaches

many kinds of algorithms and there is  no self-evident  trivial  characterization of all  these

things. So what I try to show you on this slide is how I want to talk about a few concepts in

the in the rest of this lecture. So actually the focus for the rest of the lecture with something

called a support vector machine. A support vector machine is a kind of scheme or type of

algorithms which are an instance of something called binary linear classifier and essentially

the common theme for all of these is to look at the instance space and try to find lines or

surfaces that distinguish between different classes and for the word binary of course signifies

could we talk about two classes yeah in the basic case. So this is a special kind of algorithm ,

however I find it natural to discuss it here because typically the support vector machines

work in a work in an instance based learning fashion in the sense that this kind of algorithm

does not build up explicit hypothesis structure. So rather it computes indirectly some kind of

surfaces in the feature space which corresponds one can say to the hypothesis. So therefore

support vector machine in my mind is very much inspired by instance-based learning and the

case is though that support vector machine in its basic form handles only the linear case. So if

we want  this  technology  to  be  able  to  handle  non-linear  case,  we need  two answers  of

something and actually what we then do is that we the trick is to map the instance based on to

another space. So that in the new space we create it's possible to handle it with linear methods

and the technology for doing that is termed kernel methods. So that's logic of the rest of the

lecture.

A few words about Binary linear classifiers. Such classifiers are both binary in the respect

that they distinguish only between two categories or classes. They are linear in the respect

that  the  classification  is  based  on  a  linear  function  of  the  inputs.  So  each  data  item is

characterized by a vector x some features 1 to n, refer to the features of it of in instances x as

ai(x). Associate with each instance is also binary a valued class label c(x). So the goal of a

binary linear class is to find a hyperplane that line or plane the separate or something else in

higher  dimensions  and suppress  the  instances  of  the  two categories.  The property of  the

instance  space  required  for  such  a  hyperplane  to  be  found  is  called  linear  separability.

Obviously the linear classification can only handle linear separable cases. So you can see a

very simple example of this to the right. The lender (15:54) case which is easy to find and

applying in (15:52) two dimension and the case where the limiting area clearly is not linear.

So techniques that can handle non-linear situations we call nonlinear classifier techniques.



So this slide simply shows another two other examples of hyperplanes. So I mean what's

important to understand is that for an n-dimensional Euclidean space and hyperplane is of n

minus 1 dimensional subsets. So this means, that for if we have a two dimensional space

which we have to the left  hyperplane is a line, if we have a three dimensional space the

hyperplane is a plane and so on. It's difficult a little more tricky to illustrate how an hyper

plane actually looks in that in higher dimensions. The support vector machine is a model for

machine learning which operates in a supervised mode with pre classified examples. It can

also brighten an incremental  model.  It  is  an instance of a non probabilistic  binary linear

classifier system where binary means that it classifies instances into two classes and linear

means that the instance space have to be linear etcetera. A vector machine can be used to

handle  nonlinear  problems,  if  the  original  instance  space  is  transformed  into  a  linear

separable one. It can also manage your flexible representation of the class boundary, contains

mechanist to handle overfitting, it  has also a single global minima which can be found in

polynomial  time.  So  it  has  many  nice  properties,  you  easy  to  use,  it  often  has  a  good

generalization performance and the same algorithm solves a variety of problems with very

little tuning. 

The support vector  machine  or  SVM performs binary  linear  classification  by finding the

optimal hyperplane that separates the two classes of instance. So it's a typical instance of a

binary linear classifier. A hyperplane in an n-dimensional Euclidean space is a flat n minus 1

dimensional subset of that space, the divides the space into two disconnected part. The two-

dimensional space the hyperplane is a line dividing the plane in two parts as an example. So

new instance are mapped into the instance space and predicted to belong to one of the classes

based on which side of the hyperplane there are position. One should observe here that the

hyperplane is not directly stored or concretely stored as an hypothesis, it's rather computed on

demand which is typical for instance based systems. The support vector machine can even

full case only be applied to linearly separable instance spaces. So in the basic form it has

limited coverage. 

So I want to give you an informal outline on the support vector machine algorithm, so it

works like follows. So a small subset of instances in the borderline region between the main

instance space regions for the two classes are chosen as corner stones for the analysis. These

instances are called “support vectors”. So as you understand these have also given name to

the algorithm. So the SVM algorithm aims at maximizing the margins around the separating

hyperplane we look for, the maximizing the distance between the target hyperplane and the



chosen support vectors. So as you can see in in the picture to the right depending on we select

the hyperplane or line in this simple case, the margins becomes more or less broad. So the

album's aims at finding the maximum margin. One can say that the optimal maximum margin

hyperplane is fully specified by the chosen support vectors. Over there is an optimization

problem had to be solved but this problem can be expressed as a quadratic programming

problem that can be solved by standard methods.

 SVM's are very straightforward to apply in linear cases, but we also want to look into how

we can apply SVMs in nonlinear cases and also in the cases of non-feature vector data. So as

the SVM only handles linearly several instance spaces with instance expressed in fixed length

real value feature form, all problems that we want to approach SVM have to be transformed

into such kind of linear separable spaces, typically most cases when we create a new space in

order to achieve the separablity we want that space will typically have more dimensions than

the space we start from. So the simplest case the most straightforward case is that we still

have instances expressed as feature vectors but the instances are so configured that they are

nonlinear  separate,  and this  is  where we will  focus the rest  of this discussion.  The other

problem which is also important in all cases is the problem of being able to apply a method

design for handling feature vectors, for instance spaces where the instances are expressed in

other forms. And I already illustrated for you an example of that in the context of the cosine

distance measure similarity measure where one have to ,we have instances there are texts

when I have to map those texts, the features of those elements of those texts into feature

vectors. And this goes for other things it's so you can see to the right examples of complex

molecular structures, if those are the row instances those also have to be transformed into a

feature vector form in order to use this tiny standard kind of method. A key concept in our

approach to transforming a nonlinear feature space to an equivalent linear space is to make

the new space more high dimensional, a problem with that is that many times computations

of  instance  coordinates  in  the  high  dimensional  target  space  is  often  more  complex  and

costly. Luckily enough the SVM algorithm only needs distance/similarity measure between

instances position in a linear separable space.  So this means if  you create a new map or

reduce space on to a new space which is linearly separable, that's of course a requirement, if

we do that then we can see to that we define a similarity measure in that new space, such that

the similarity measure is expressed in terms of the coordinates from the original space, which

is more easy to compute. So to summarize we define a similarity measure that is applicable

and  meaningful  for  a  new  high  dimensional  space,  the  SVM  algorithm  can  use  those



similarity measure however the detailed calculation of the similarity measures are defined by

a function which called the kernel function. So that they are expressed in terms of coordinates

from the original space. So then of course is very much up to how we choose this function so

that can work that way and the clever choice actually is to define the kernel function in terms

of the inner product of the mappings of the coordinates in the original space. So this scheme

is what is called the Kernel Trick.

Let's look at an example so consider a two-dimensional input space and a three-dimensional

target space with the following feature mapping onto the linear separable three-dimensional

space. To the right you can see what we're trying to do, we have a two dimensional space

where we have instances that are not linearly separable what we now try to find is a mapping

that  map's  the space into a  three dimensional  space,  where the instances  is  more clearly

linearly separated. So what we do is to issues a mapping, so actually we map at an instance

x1, x2 on to  three new coordinates,  with the first  coordinate  in the three dimension is  a

square, and of the x coordinate in the first, and the second coordinates the second and the

third is a square root of two times, one times larger so okay. So this is how we define it, so if

we then look at two vectors x and z ,and we can consider them of course in both spaces and

we look at the similarity function in the three-dimensional space which we choose to be the

inner product of x and z in that space, and then we expand that through a normal calculation

using the definition of the mapping, and then it turns out that when we done that calculation it

turns out that becomes equivalent, of course depending on our initial choice of mapping. As

the square of the inner product between the corresponding vectors in the two dimensions, so

this  means  that  we  fulfilled  what  I've  said  in  an  earlier  slide  that  we  want  to  define  a

similarity measure in a higher dimensional  space but still  in being able to compute these

distances in terms of the coordinates in the original space. So this is very simple an example

of this can be achieved.  

So apart  from extending the  use of  support  vector  machines  from the linear  case  to  the

nonlinear case which we now discuss extensively, it's also interesting to see how it can be

extended to two other classification scenarios. So one natural case is to see whether we can

extend the use of this technology from binary classification to multiple class problems and

the  strategy  here  is  then  to  reduce  the  single  multi-class  problem in  to  multiple  binary

classification problems, because for each of the second week we can then apply this rehab

technique. It's also possible but maybe no not as exactly a straight forward but possible to

modify the algorithm, so it can handle regression keeping most of the key properties of the



algorithm. So this was the end of lecture 4.4, on instance-based learning. So thanks for your

attention. The next lecture for point 4.5 will be on the topic cluster analysis, thank you


