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Welcome to the fourth lecture of the fourth week of the course in machine learning. In this

lecture we will talk about instance-based learning, for practical reasons this lecture is divided

into two videos and this is part one. The subtopics of the this lecture are as follows, first I will

talk in in general about instance-based learning what it is, and say a few words also about the

character  of  the  so  called  instance  space,  then  we  look  in  more  detail  on  a  particular

algorithm called the K-Nearest Neighbor algorithm and in conjunction with that discuss an

important aspect of this kind of systems, the Distance and Similarity matrices. And then we

will expand and look at a more general Neighbor K nearest neighbor algorithm called the

Weighted Nearest Neighbor, after that we will go into a kind of different area and we will

talk about support vector machines which is a kind of binary linear classifier  ystem and we

will I will talk about something called Kernel Methods where Kernel Methods is useful and

in order to make machine learning algorithms that in basically handles the linear case also

being able to have a nonlinear cases.

Instance Based learning is a family of learning algorithms that instead of performing explicit

generalization, compares new problem instances with instances seen in training which have

been stored in memory. As a consequence of that this kind of technique is also often called

Memory based learning. The reason for the name instance based learning is because this kind

of technique evaluate is cause it directly based on the training instances themselves, and not

explicitly towards to build up hypothesis. One can say that instance based learning is a kind

of lazy learning where the evaluation is only approximated locally and all computation is

deferred until classification. tTere is no computation needed to build a hypothesis obviously.

And  in  the  worst  case  a  hypothesis  is  the  list  of  n  training  items,  so  therefore  the

computational complexity of classifying a single new items is at least of the order of n. One

advantage  that  instance-based  learning  has  over  other  methods  machine  learning  is  its

flexibility to adapt its model to previously unseen data because actually the character of its

classification change with a  built  up of the memory of instances.  And an instance based

learning may store new instances on or throw away instances, it depends in of course of the

details of the algorithms. In many machine learning approaches the internal structure of the

instance space is not explicitly considered. However the character means and space is always

important it is always implicitly influenced the performance of learning algorithms, even if

the character of the instance space is not explicitly considered in the algorithm design. But

here can contrast  for instance based learning the character  of the instance base is of key



importance.  In  earlier  lectures  a  few  crucial  aspects  of  the  instance  base  have  been

mentioned, the number of it features, the value set of features, instances of special status, we

talked about prototypes, outliers and near misses which are all structural aspects. And also we

mentioned similarity distance measures which is a key issue here but we will also now talk

about structural properties of the whole space such as spareness density etc. These aspects

will now all come into play. I will now concentrate the discussion on one particular kind of

instance-based  learning  algorithm  all  the  k  nearest  neighbor  algorithm  KNN.  In  this

algorithm, the analysis is based on the k closes training examples in the instance space, what I

mean by closest is closest to the query item. k is a predefined positive integer that have to be

set before you use this kind of method normally issues k to be small and odd. Potentially an

optimal k can be calculated by special technique hyper parameter optimization techniques. So

as you may have understood by now many of these parameters can also be learned that they

the parameters control a learning technique but they the families themselves can be learned so

special techniques. So this is a second-order kind of learning that is possible. The typical

representation of any instance in this case it's a feature vector with a number attributes, or

features plus labelled or a number which constitutes the target function we still here talked

about supervised learning. So we still suppose that all our instances are labelled. The training

phase is simply the storage of the feature vectors of all training in a data structure nothing

more happens at that point. For this kind of approach we only is a distance metric that means

a metric that that measures the distance between the instances, the default metric is Euclidean

distance the well-known distance it's the distance between two elements in a Euclidean space,

the square root of the sum of the differences between the Euclidian coordinates of the two

elements.  Normally  also you select  and define  a metric  like  this  one but  also as for  the

number k, the metric can also be learned hypothetically.  The k-NN can be used both for

classification and regression and in the kNN classification case the output is of course a class

membership. Here a query instance is assigned the class label, most common among its k

nearest neighbors. If k is equal to one, of course then it's which is a special case then the

instances assigned in the class of that singles nearest neighbour. And one can say in a way

using an analogy the that all the k-nearest neighbors vote for the choice of the class label in

the case of k being larger than one. And in k-NN regression, the output is the property value

for the query instance, and this one is the average of the values of its k nearest neighbors. For

example for practical reasons we will use simplest case which is binary classification in a

feature space of two dimension. So to the right you can see just a summary of the stages in

this  kind  of  algorithm,  you look at  the  look at  the  data,  as  per  in  the  space,  calculated



distances,  find the  appropriate  number  of  neighbors  and given that  you have  chosen the

neighbors, you calculate the average of the outcome and take that as the class label in this

particular case of making a classification task.

From this slide you can see our very simple illustration, over classification application for the

k nearest neighbor algorithm. It illustrates the outcome of the algorithm for different values

of k in this case value 1, 3 & 5. So as you can see for the inner circle there is own and you

only look at the closest a neighbour, which in this case happened to be an instance classified

as blue. And when you select the number three, you take consider three neighbors and then it

happens to be that two more ready instance is coming to play, so the outcome the algorithm

will be will be red. While if you consider five instances two more blue come into play, so

then suddenly it walked over again towards the blue case of the outcome of the algorithm it

will  be blue.  So this shows that the result  outcome of this algorithm will  clearly change

depending on how many instances you view include in the process. It's obvious that in the

case of instance-based learning there is only one explicit space, the instance space. As been

said a  hypothesis  space is  never  explicitly  built  up.  One can say that  the hypothesis  are

implicit in the structure of the instance space as defined by the chosen matrix. One form of

illustration for these implicit representations is the co-called Voronoi diagram. A Voronoial

diagram is a partioning of the decision surface in two convex, polyhedral surroundings of the

training instances. Each polyhedron covers the potential query instances possibly determined

by  training  instance.  And  query  point  are  also  specifically  is  closer  to  another  training

instance and it's of course also included in some polyhedral. And this kind of diagram is not

explicitly used for the processing on the algorithm, but it shows an important purpose in

being able to illustrate for the user of the system, how the situation looks like. We exemplify

here all the time by two dimensional cases, but as you understand it's natural to extend this

kind of technique to dimensions larger than two, so you can see at the bottom to the right an

illustration of that case.

One important feature of our aspect of instance based learning, is the existence of distance

measure, similarity measure, approximate measure and it you have always to define this kind

of measure for all instances in the instance space. And as you can see from the figure to do

that to the right here, this means that that the instance space always have to be a metric space,

this means a space with a matrix. And however the most typical case is that our instances are

feature vectors, it doesn't necessarily have to be so because an instance can could be anything

and you can also think of other kind of entities, on which you hypothyse a matrix, but the



very very common case is the feature vector. So therefore I want to talk a little on this slide,

about two kinds of vector spaces that are well known from mathematics it's called a Normed

space and an Inner Product Space. So the more general category is a kind of vector space that

has something called a norm. So a norm is a real valued function that intuitively couple to a

length  or  a  distance.  And a norm satisfies  the number of  key properties,  one of them is

number 4 here is a triangular  inequality,  this  means that the distance is the norm of two

vectors is always less or equal to the sum of the norms for each one of them. And we have a

special  notation  for  the  very  special  case  of  a  Euclidean  norm,  Euclidean  norm as  it  is

actually a norm, the traditional norm we know from a Cartesian space where the distance is

the square root of the square root of the sum of the arguments or features of the vector.

Obviously a distance here naturally is the norm of one vector minus the other. So this is this

is normed space and then we can go further and we can look at normed space whether also

exist an operation called the Inner product. And as you can see down there and then an inner

product or dot product, in your Euclidean case they are equivalent, is first of all a scalar value

and also the classical definition is that the inner product of two vectors are the product of the

norm multiplied by the cosine of the angle between the vectors. And so on as a special case

when the angle is 90 degrees, the cosine becomes zero, so then inner becomes the products as

a  consequence  and  we  call  this  in  this  case  the  two  vectors  are  orthogonal  that's  the

terminology. So we need these concepts because when we define distance measures, we need

both the cause of them norm and we also in some case the concept of inner product. And you

can see in the picture to the right, inner product space it is a subset of the Normed vector

spaces  and  Normed  vector  spaces  is  a  subset  of  the  Metric  spaces.  Let's  turn  then  into

Distances  and  Similarity  matrices.  So  a  distance  metric,  this  is  measure,  function  are

synonyms, is typically a real valued function that quantifies a distance between two objects.

So this is between a point and itself are zeros, of course all other distances are larger than

zero, distances are symmetric and then we have a triangle inequality which informally means

that detours cannot shorten the distance, so yeah it's always longer to go from one point to

another by another point. So Distance and similarity metrics have been developed more or

less independently so in certain cases, it's more practical to talk about the distance between

one vector and another or a one point with another, in other cases is more natural to talk

about how similar are things. So therefore depending on the context and these people have

developed on one side distance metrics, on one side similarity metrics but obviously they are

always connected intuitively. And obviously they are somehow inverses of each other and

can be transformed into each other, but you will find and maybe it's a little confusing that's



sometime talk about this distance metrics separately and similarly define them separately, and

but  of  course that  can  always  be  a  transformation  between  them.  So typically  similarity

metrics takes values in the range of -1 to 1, so they are always normed somehow, and where

one means that the objects are regarded as identical and -1 means is the maximum distance

considered by the corresponding distance metric. So if you have a same similarity of -1 there

your are as far as you can, think of in that context. While distance metric often take values

from 0 to  infinity  or  anything,  but  of  course  there  is  always done some transforms and

normalization  to  make  distance  a  similarity  matrix  comparable.  We  will  always  here

exemplify  by  using  metrics  in  a  normed  Euclidean  vector  space  matrices  based  on

overlapping elements. So those are the two cases we will focus.

Now I  want  to  give  you some examples  of  distance  measures  so first  we start  with the

category which is called the Normed and Inner product vector spaces. So these are kind of

classical measures suitable for instance spaces where we have normal feature vectors. And

now there's something Minlovsky distance which is maybe not so well known to you, but one

can say that the Minlovsky distance is defined in such a way that it is becoming a umbrella

concept for three more well-known the types of distances. So actually Minlovsky the distance

is defined as you take the sum of the differences between arguments for two vectors, you

raise each sum to the degree of k, you make the summation and then you take the kth root out

of that sum. When one that looks at different values k, you can see that if you take the value k

you get  your  Euklidean  distance,  so then  you get  simply  the  sum of  the  squares  of  the

differences and then you take the square root out of that sum and the classical theorem of

Pythagoras as a distance. Then so that's well known if you take k us number one, you get

something else that is also pretty well known call the Manhattan the distance. Actually the

Manhattan  distance  is  then  the  sum  of  the  absolute  differences  of  the  argument

differences.And  it's  called  Manhattan  distance  because  if  you  consider  you  are  moving

around from one office in a row in Manhattan the most important thing is not the distance on

the ground it's also the distance in the houses. So you go from the hundredth floor in one

building to the 250 floor in another it's more important with the vertical distance and the

horizontal, so that's a joke called as the Manhattan distance. Then we have a third case this is

also rather well known that if we choose the value k to be infinity and then the formula

deteriorates are actually ending in this limit of infinity we get actually the definition of the

distance as the maximum value of the differences in our arguments. This distance is also

called the chess board distance because actually this is equivalent to the to the minimum



number of moves the King can make on between two chess pawns. A special measure I want

to mention that not only needs norms but also means inner product, is the cosine similarity

measure, so actually the cosine similarity measure is equal to the cosine of the angle between

the two factors and that can also be calculated as an equation in terms of square roots. It's

interesting because in some cases when we compare feature vectors, this size, the length of

the vectors are not necessarily important but the rather the angle between them, of course it's

a little abstract here because if we have a feature vector and another feature vector but what

does an angle mean, but there are obviously some domains where it makes sense primarily to

look at the difference in angle and that's exactly what this measure measures.

So  obviously  this  algorithm  gets  very  different  property  depending  on  which  similarity

metrics you applied. So if you have a nice system where you can simulate this and you can

easily produce Voronoi diagrams visualization, then you can then easily see that when you

plug in one matrix you get one result and when you change you get a difference, so here you

can see an illustration how you can how the Voronoi diagrams looks when you apply in a

Euclidean matrix on an application and then what you get when you change to Manhattan

distance for example.

Some of the similarity measures are pretty straightforward and easy to understand, but maybe

the use of the cosine similarity is a little more unintuitive, so to give you an illustration of the

use of the cosine similarity, I included an example here which I find pretty neat. It also shows

actually it's a simple example that in many applications you have to map, you have to map

properties of instances in a domain that is a different rather different form into a kind of

feature vector. So this is an example of a domain where you want to look at medical texts or

pharmaceutical tags or medical texts and you want to measure the frequency of certain kinds

of terms. So the trick here is you take each text fragment or page or whatever is the unit of

analysis and then you count the number of the key terms you want to measure, and then you

choose as features or dimensions of your instance these terms, and the values of each such

term becomes the frequency of that term in that particular text. So this it shows how you can

take like a normal text and the page is of course the kind of raw instance data, and then you

transform that text into this feature vector that just keeps the key terms and the frequencies.

So then when you transformed the instances of that domain into a feature space and then you

can apply these kind of methods, and then also intuitively it makes sense that the it's the

relation here of frequencies it's not so important with the actual number,it's more important to

see is it one term that dominates over the other,  so intutively I hope you can understand that



that  the difference  is  that  the distance between these are  more  of the angle between the

vectors because the angle is influenced by the relative size in the different dimensions, so

therefore this is a case where the cosine matrix makes sense.

Metrics for feature vector spaces are important but not necessarily we have to be tied to that

so sometimes it could be so that our instances are something else, so our instances could be

sets,  binary  strings,  texts  and  so  on  that's  possible.  So  therefore  I  included  here  three

examples of similarity measures that works on that kind of instances. So if you look at texts

or words, we have something called the Levenshtein Distance which actually which actually

embodies the idea of changes or substitutions that have to be made of single characters in the

text or wording in order to create the other. So Levenshtein Distance is an example how your

view can define a similarity matrix or distance matrix between text. Similarly when if the

instances are sets and we have something called the Jaccard Index which measures actually

then similarity between finite sets and it's defined as the intersection of the two sets divided

by the union. So the final example is something called Hamming distance which is a classical

distance  from  information  theory,  where  you  actually  it's  very  similar  of  course  to  the

language time distance but it's defined for binary strings. So actually the Hamming distance is

the number of positions at which corresponding symbols are different. So it measures the

number of minimum substitution required to make one the two strings equivalent. 

Going back to the k nearest neighbor algorithm is automatic (32:35) before we leave it some

issues that one have to consider for this kind of algorithm. So actually the theoretically the

number of k can number k can be anything but typically one should avoid an odd number to

avoid tied votes, very practical comment. And either you define k yourself or you can try to

learn it and in the next slide we exemplify a kind of method it is also a kind of learning

method  how one can  define  or  infer  a  suitable  value  of  k  through something  called  the

bootstrap method. And another comment is that this kind of majority voting for deciding that

can  be  problematic  when  the  distribution  is  skewed,  so  of  course  this  method  is  also

dependent on on how the instances are distributed in the instance space. Also if you have a

very large number of examples of one class and very few or another, it also can create an

issue because of the density or of the dominating class can happen to be high in the context of

a new example, so this can also create anomalies in the analysis. Also if you have a large

feature set and where you haven't really done a thorough feature engineering many of these

features can be are irrelevant and therefor those instance space expressed in these features can

have strange properties of balance the relevant histories may be in one corner, the irrelevant



in another. So this may also cause problems and relating to that you can actually get a very

spares instance space and it may be so that this idea to have exactly the same distant metric

for  every  case  may  may  have  negative.  So  of  course  there  are  positive  things  with  k2

neighbor but as you have understood from this line there are also a number of issues that can

occur because the structural properties of the instance space can be skewed in many ways.

So  last  time  I  mentioned  on  method  to  mainly  define  optimal  values  of  some  of  these

parameters or hype parameter needed to be set for an algorithm like a k-near neighbor one.

One such method is called the Bootstrap method and this method works in such a way that

one takes small more samples out of the original dataset and you draw observations from the

large sample one at a time, returning them of course because you won't disturb the dataset

after  this  process  the  dataset  have  to  be  as  it  was  so.  This  method  allows  you  to  use

observations for a pre study and then you can as  if nothing (35:54) happened you can then

continue in the end with the original analysis is called sampling with replacement. So the

booster method can be used to estimate the quantity of the population so you repeatedly take

small samples, calculate whatever statistics you want ,so in y our case last slide you try to

calculate prognosis for good k, then take the average of the calculated statistics. 

So to summarize in the boot strap method, you choose a number of such samples you choose

the size of the sample and the draw a sample with a replacement, you can latest statistics and

then you take the calculated mean of the statistics, of course you know you have to be as

precise  this  is  general  method  so  you  have  to  define  of  course  precise  measures  for

calculating the statistics you're interested in, but it's a general scheme for making pre studies

so to say of a data size, the data set in order to get a good prognosis for the setting of a hyper

parameter. For practical reason not to make the video too long we make a break here, and we

continue to talk about instance-based learning in part two. thank you bye


