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Welcome back to the third lecture on the fourth week the course in machine learning. We will

continue our discussion about decision tree learning algorithms. We will spend most of the

time to talk about the ID3 algorithm. So ID3 which is short for Iterative Dichotomiser 3 is a

TDIDT (Top-Down Induction  of  Decision Tree)  algorithm,  invented  by Ross  Quinlan  in

1986. The TDIDT algorithm returns just one single consistent hypothesis and considers all

examples as a batch. This kind of algorithm employs a greedy search algorithm, which means

that it performs local optimizations without backtracking through the space of all possible

decision  trees.  Obviously  it's  susceptible  to  the  usual  risk  of  hill  climbing  without

backtracking  and  as  a  consequence  finds  tree  with  short  path  lengths  typically  but  not

necessarily in the best tree.  This kind of algorithm selects  and orders features recursively

according to a statistical measure called Information Gain, which we described earlier in part

1 of this lecture, and until each training example can be classified unambiguously. Some kind

of inductive bias is built into this algorithm. On one hand it's prioritized simplicity, which

means this applies Occam’s razor by always choosing the simplest tree structure possible. But

also  as  already  mentioned  it's  systemically  prioritize  for  high  Information  Gain  when

selecting features to discriminate among instances.

I assume you all know William Occam, a monk in the 15th century started to study logic, and

who for was the first to phrase the principle of choosing always the simplest solution to any

problem. So when there is a choice of alternatives, always use the simplest variant. This is

relevant  for  discussion  we are now but  as  you hopefully  already know, is  a  very useful

principle in a number of situations.

The ID3 algorithm starts with the original data set as associated with a root node. On each

iteration of the algorithm the algorithm, it considers every unused feature and calculates the

Information Gain of that feature. It then selects the feature which has the largest Information

Gain value. The data set is then partition by the selected feature to produce subsets of the data

that is then associated with the branched out nodes corresponding to the values of the chosen

feature. The algorithm continues to recur on each subset considering only attributes never

selected before. Recursion on a subset may stop in one of these cases, case 1 if every element

in the subset belongs to the same class, the node is turning to a leaf node and labelled with a

class of these examples. If there are no examples in the subset it's an empty set a leaf node is

great in a label with the most common class of the example in the parents nodes set. If there



are no more attributes to be selected, but the example still do not belong to the same class, the

node is made a leaf node and the label with common class of examples there in the subset.

So  throughout  algorithm  the  decision  tree  is  constructed  with  each  non-terminal  node

representing selected feature, on which the data is split and terminal representing the class

label they're suited for the final subset of this branch. Let us now take a look short look at the

pseudo-code for the ID3 algorithm. I already can formally characterized how the algorithm

work but  hopefully  by going through this  pseudo code shortly  you need consolidate  the

understanding of how it works. So actually this algorithm takes as input a set of instances, set

of classes and a set of features and what it does is that it returns a tree actually. It says return

node in the end but actually the node well due to the function of the procedure the algorithm

returned actually a tree. So it creates the root node in the first iteration and then it checks if

only  instances  that  it  I  belongs  to  the  same class.  So then  you have  actually  node with

maximum purity, then you return a single node tree with class label belonging with a class

label belonging to those instances. If the feature set is empty, there are no more features to

choose from in order to split the tree, then you also have to stop the algorithm and what you

return is this single node with a label that is the most common label class label still in the set

of instances that you have. Otherwise you still have instances, you still have classes, you still

have feature, so you select the feature you select a feature by first calculating the maximum

Information Gain again for each feature and then you select  the feature with high as the

information gain. And for each value of that feature, you add a new branch belonging to that

feature, then you create a new subset of the instances that satisfies that feature value, if that

instances is empty then you just create a leaf node with the most common class label you

found among those instances.  Otherwise you make a  recursive call  to  the ID3 algorithm

again, using the arguments now the instances but only those instances to belong to this branch

of course you return the also have a parameter of the classes, but then you also include the

features  but  of  course  you have to  remove the  feature  already used because  putting  this

algorithm never reused in in this process. And finally the algorithm stops by returning the

node. So that's the functionality.

Let us now reverse it the simple example again that we introduced in part 1 of this lecture, so

this was the example where we look at this 14 instances which are characterized by a number

of features outlook, wind, humidity or temperature and so on. And in this slide it's depicted

which kind of decision tree is produced by feeding those examples to the ID3 algorithm. So

as you see we had 49 data items to start with 9 positive 6 negatives obviously the information



gained test decided that outlook was the most relevant feature to use in the first place to

discriminate  among  the  instances  and  recursively  down  the  way  humidity  was  chosen,

eventually wind was chosen, so and as you can see given the decision or considering those

features in that order, the dataset post partitioned, so that 5 data items was associated with the

outlook sunny case, 4 with these outlook overcast case rain, 5 items with the rain outlook

case and so on. As you see we ended up with actually 5 leaves of this tree, and it turns out

that in this case only 3 of the four features were used to produce the decision tree. I should

the comment on the phenomena of noise. Non-systematic errors in the values of features or

class  labels  are  usually  referred  to  as  Noise.  Typically  two  modifications  of  the  basic

algorithmic are required if the tree building should be able to operate with the noise affected

training set. The algorithms must be able to work with inadequate features, because noise can

cause even the most comprehensive set of features to appear inadequate. And secondly the

algorithm may be able to detect if testing further attributes will not improve the predictive

accuracy of the decision tree but  rather  result  in overfitting  and the algorithm must  as a

consequence be able to take some measures for that like pruning. 

Now we turn to the problem of overfitting. So one serious problem for decision trees is the

risk of overfitting, the practical significant practical difficulty and for decisions is many other

predictive  models.  Overfitting  happens when the learning algorithm continues  to  develop

hypothesis that reduce training set error at the cost of an increased test set error. So let's

introduce a few definition so let's say that the average error for in our processes the training

data is called ET and the corresponding average area for the training data plus the data in

kind of all data, all together is ED. So we define overfitting in the following way, so if we

have an hypothesis H, we say that this hypothesis is overfitting training data if the ET(h),

which means the training data error for this hypothesis is less than some other than ET for

some other hypothesis ET(h ‘)  but the ED  the error for test data of h is larger than the ED

for  tests  for  some  other  hypothesis.  So  this  means  actually  that  there  are  better  other

hypothesis  now with  respect  to  the  accuracy  for  test  data.  So I  said you can  see  in  the

example to the right and where you can see on the x-axis the size of the tree so when the tree

grows the accuracy becomes better for the training data but it's actually more like a goes

down for the test data. 

So for decision tree the most important approach to handling overfitting is through pruning.

So pruning is the major approach in this case and the idea with pruning is of course reduce

the size of the decision tree without reducing predictive accuracy as measured by a test set or



cross-validation set.  So there are two kinds of pruning, so on one hand we can have pre

pruning where you stop to grow the tree earlier before it perfectly classifies the training data

set, which means that no longer data split is statistically significant. So criteria for stopping

are usually based on just the statistical tests like the chi-square tests and of course the aim of

this  test  is  to give a ground for decisions whether to expand particular  node or not.  The

problem with this test even if they those tests exist is it's still not a trivial problem. So the risk

of stopping too early is imminent. The alternative which is essentially a much more popular

approach is called Post-Pruning, where we allow the tree to grow so it perfectly classifies the

training  set  and then afterwards  we post-prune the tree by removal  of  sub trees.  I  mean

common approach here is to set aside some part of the data set that we could call a validation

set, evaluate and use that validation set as a basis for the decisions in the post pruning phase.

One variant, simple variant of post pruning is called Reduced Error Pruning and the scheme

for  that  looks  roughly  as  follows.  So actually  the  data  set  is  split  into  a  training  and  a

validation set. And the validation set is used as a basis for the pruning procedure. All nodes

are iteratively considered for pruning. The node is remove if the resulting tree performs no

worse than the original on the validation set. Pruning means removing not only the node but

the whole subtree for which no one is the root making it a leaf and assign the most common

class  of  the  associate  instances.  Pruning continues  until  further  pruning is  considered  as

deteriorating accuracy. So this is a pretty simple procedure but it's pretty freely reflects many

schemes  for  post  pruning.  Before  we  leave  the  talk  down  induction  of  decision  tree

algorithms, I will say want to say something about the some other algorithms. So actually

ID3  I  would  say  is  the  prototypical  algorithm  and  therefore  I've  been  using  it  for

exemplification, however there were much earlier systems of this kind one of those called

CLS and actually ID3 is an extension of CLS. And also Quinlan who developed ID3 fold up

this work and there are actually more current versions that are in practical use that's called C

4.5 and there is also something called C.5 and actually C4.5 was at a time consider the default

machine learning algorithm, that means a very popular tool to use for machine learning. Then

there are others ACLS, assistant, CART etc. So there are many alternatives in general one can

say that the later system extends ID3 in various ways but the primary ways are actually that it

extends  the  kind  of  data  types  that  are  allowed  for  the  features  because  ID3 was  pretty

restrictive here. Also the later algorithms are much better with respect to pruning and they're

also much better with respect to noise handling.



So to further emphasize what I said for the last slide you can see on this line a subset of these

systems are compared, so let's just look at ID3 and C4.5. And then you can see that on the

point where  C4.5 is working a better performance than ID3 because it can handle more wider

range of feature values, it can handle missing values with more or less me is equivalent that it

can also handle noise and obviously it has a more sophisticated pruning techniques. Still there

are certain things that are not handled in C4.5, like also handling the case of Outliers which is

also a common phenomenon, but as you can see another system a CART has mechanism for

handling that.  So far we have talked primarily about approaches to building decision trees

which have the purpose to build one single tree. As you remember most of these methods

performs in a greedy fashion which means that they take local decisions to form the tree

therefore cannot  be guaranteed to give to result  in a  a globally optimal  tree.  So there is

another  category  of  approach  is  called  Ensemble  Approaches,  where  assemble  methods

which construct more than one decision tree and use the set of trees for your classification. So

there are two kinds of approaches relevant which are not only relevant for decision trees but

for different kinds of classifiers. So we have boosting approaches where boosting means that

we take a sequential approach where a sequence of average performing classifiers, it can be

one decision tree, second decision tree, third decision tree, can give a boost performance by

feeding experience  from one classifier  to  the next.  So we use experience  on the first  to

improve the performance of the second. One example of such a system is called Ada Boost

which is not only applicable to decision trees but to many ML algorithms. The other variant

is called Baaging approaches where bagging is a parallel approach, where a set of classifiers

together can produce partial results fully in parallel that then can be handled, can be used to

form the basis for a total negotiated result. So one example of that is called Random Forest

algorithm which combines random decision trees with bagging methodology to achieve very

high classification accuracy. So to take a concrete example of an ensemble method we can

look at  random forests  or random decision  forests  which are techniques  can be used for

classification,  regression  and  other  tasks.  So  random  forests  operates  by  constructing  a

multitude of decision trees at training time and outputs the class that is the most common of

the classes or mean predictions produced as results from the individual trees. So the random

forest approach is also an alternative remedy for the decision tree problems of overfitting, as

you can see and you can see to  the left  you can see illustrated  how the outcome of the

individual trees are used as a basis for some kind of majority voting to decide upon a final

class or a final regression value, and to the right you can also see in the strategy that in many

cases the accuracy becomes better, so when using the random forest approach you can get a



much more smoother result that is closer to the desired output. So this was the end of lecture

4.3 and thanks for you attention. The next lecture 4.4 will be on the topic of instance based

learning thank you and good bye.


