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Welcome back to the lecture on generalization as search which is part of the fourth week of

the machine learning course. We did make a technical break in in this lecture in order not to

have too long video sessions and we did make the break when we were starting to discuss

generalization methods.  We did look at  depth-first search algorithm and what we are not

going to do is to look at the second kind of algorithm, the breadth-first. So let's now turn to

the breadth-first search  strategy once on this slide you can see it's also termed specific to

general and we will come back to that prefix so in contrast to depth first search breadth first

search maintains the set of several  alternative hypothesis not only one. The current set of

hypothesis  and as you will  see the most specific  such hypothesis  is termed S and S is a

generalization  consistent  with the observed instances  such that  there  is  no generalization

which is more both more specific than S and consistent with the observed. So again we in this

method we work from the most specific hypothesis that can cover the instances seen so far

and  generalize  those  generalizations  when  needed.  So  starting  with  the  most  specific

realization  the  search  is  organized  to  follow the  branches  of  the  partial  ordering  so that

progressively more general generalization or considered each time the current set must be

Modified. So we initialize as to the S of maximally specific generalizations consistent with

the first observed positive training instance. In general positive training instances force the set

S to contain progressively more general hypothesis if we encounter negative instances we

need to eliminate some generalizations from S thereby pruning branches of the search which

have become overly general. So this search proceeds monotonically from specific to general

hypothesis.  The candidate  revision of S must be tested for consistency still  with the past

positive  and  negative  instances.  So  in  light  this  respect  that  this  algorithm  shares  the

properties of the depth first. One advantage of this strategy over the first search stems from

the  fact  that  one  can  see  say  that  the  set  S  represents  a  threshold  in  hypothesis  space

generalizations more specific than this threshold are not consistent with all observed positive

instances where is those more general than this threshold are. Let’s now look at the pseudo

code  for  the  breadth-first  search  strategy.  So  we  start  by  initializing  S  to  a  set  of

generalizations consistent with the first training instance. For each subsequent instance i we

have two cases either we encounter a negative instance and if we went out the negative the

instances we are we need to modify the set S so that we only retain those generalizations

which do not match this new negative instance. In the other case if we encounter a positive

instance,  then there are two things to do, so first of all  what we do is we generalize the



members of S, the who which do not match i along each branch of the partial ordering. But

only to the extent required to allow them to match i which means that we're conservative we

generalize of course in order to cover new but not too much so we keep to the most specific

generalizations needed to be done. And after that we'll also have to release it S and look at it

and see to that if there is a more general element of S then the newly created, then we should

remove  that  element  or  it  could  also  be  so  that  our  elements  in  S  now that  matches  a

previously observed negative instance and that we cannot allow, so also those elements have

to be removed. So this is pseudo code for this algorithm. 

Let us now look at the example again. So we have three instances, two positive or negative

and this allows us to look at three iterations of running the algorithm. So we can then also

create three versions of the hypothesis space, S1, S2, S3. So the first thing we do is that we

instantiate S to the most specific generalization consistent with the first example. Then we in

the next  step we need to revise S1 in  response to  the second post  instances.  Here S1 it

generalized along each branch of the partial ordering to the extent needed to match the new

positive  instance.  So the  resulting  set  S2  is  the  set  of  maximally  specific  generalization

consistent with the two observed positive instances of form. And of course you should also

observe here like in the examples for depth first, that the every instance is an unordered pair

of objects, so the order of the two parts within the instant doesn't matter. So the third data

item is a negative training instance, in this case one of the members of S2 was found to match

the negative instance you can see that if you study the previous slide and therefore need

needed to be removed from the right set of S3. So when we look then the resulting was in S3

there is no possibility of finding an acceptable specialization of the discourage generalization

and no more specific irritation is consistent with the observed positive instances. At the same

time  no further  generalization  is  acceptable,  since this  will  also match  the  new negative

instances. So all of these things have to be taken care by the algorithm.

Let us now turn to the third strategy the so-called version space strategy. Actually the version

based  strategy  is  an  extension  of  the  breadth-first  search  approach  and  it's  a  combined

specific to general, in general to specific approach. So in addition to the set S that we used in

the breadth-first case, we define a set G, Center members of G are as general as possible. So

G is all hypotheses consistent with the observed instances such that there is no generalization

which is  both more  general  term G and consistent  with instance.  The set  S are  handled

exactly as it was in in the breadth first case together the sets S and J precisely delimit what

we  call  than  the  version  space.  So  generalization  X  is  contained  in  this  version  space

represented or bounded by S and G if and only if  x is more specific than or equal to some



member of G and also more general than or equal to some member of S. So the advantage of

the version space tragedy lies in the fact that the set J summarizes the information implicit in

the negative instances that bounds the acceptable level of generality of hypothesis, while the

set S summarizes the information from the positive instances that limits the acceptable level

of specialization of hypothesis. 

So this can then be depicted in a simple slide like this, where you can see S and J and you can

see the area of S and J and between them which are the consist of generalization. So upwards

more general that much more specific.  So and exactly  what happens is that when we go

through the algorithm iteration for iteration positive examples tend to move the S set upwards

a negative example tend to move the J level down, which means that step by step the possible

hypothesis are squeezed in between S and G where the gap becomes more and more narrow

and of course to make in the end there should only remain one optimal hypothesis. 

Some more comments on the version space strategy then before we go to the example. So

testing whether a given generalization is consistent with all the observed instances is logically

equivalent  to  testing  for  it  lies  between  the  sets  S  and  G  in  the  partial  ordering

generalizations. The version space method is assured to find all generalizations within the

given  generalization  language,  that  are  consistent  with  the  observed  training   instances

independent of the order of presentation of training instances. As you may know has many

machine learning algorithms may depend in the order in which we look at training instances

but in this case it doesn't matter. Also the sets S and G represent the version space in an

efficient manner summarizing the information from the observed training so that no training

instances need to be stored for later reconsideration. As you remember from the depth first

and breadth first, there is a need of different kind to store the training instances for further

inspection. However there are few restraints that should be noted for this technique, so as for

the breadth-first search this technique will only work when the more specific than operator

and what general an operator can be computed by direct examination or hypothesis because

we just said that we don't need to store the instances and so therefore all operations have to

rely on this explicit hypothesis space that we construct. In addition this technique assumes

existence of a most general and most specific generalization. And it may be the case that

these hypotheses do not exist.

Let's  now look at  the  pseudo code for  the  outline  of  the  version  space  strategy and the

important parts here are the two blocks. So there one block for actions for in the case that we

encounter negative instance and one black collections and we encounter a positive instance.

And as you see here there is a nice symmetry between these blocks with respect to how the



two sets S and G are handled. So if we look at the first part of each block so you can see that

what we need to secure when we see a negative instance is that we have to retain in S only

those generalizations which do not match G because we cannot allow for any hypothesis that

match a negative instance okay. So symmetrically then when we see a positive instance we

have to see to that in G we only have such generalizations that match G because we don't

know what generalization that do not cover one of our positive examples. Then there is a

second case you need block of actions. So and for this a case for the negative case we look at

generalizations of G that match i more specific only to the extent required, so essentially what

we do when we see a negative instance we make generalizations of hypotheses in G but we

make it in a conservative way. In the same fashion as we see positive instances we generalize

members of S that do not match G but also conservatively only to the extent required to allow

them  to  match  i  and  only  in  such  ways  that  each  you  may  more  specific  than  some

generalization in G. And finally there is a third case in both blocks because afterwards all of

this is done one and two we then have to see to that we don't have unnecessary elements in G

and S, so in the first block band when you move from the any element that is much less

perfect specific than some other elements in G, because we only and only allow G to go down

so  to  say  in  the  level  from  you're  not  to  specific  if  this  is  motivated  by  the  instance

encountered and then in  the same way remove S any elementary is more general than some

other elements in S because you also are conservative in the way we generalize S .So this is

the essence of this algorithm.

Let's look at the example again now for the version space. So we have the same example you

can see three instances, what happened now is that if we look at the hypothesis space the set

S is the most specific generalizations are exactly the same as for the breadth-first situation

because  essentially  as  I  already  said  the  version  space  approach  is  actually  an  extended

double version of breadth-first, where we both look at the most specific and the most general

hypothesis at the same time. So what actually the only difference now with this trace is what's

happened to the to the set G. So the situation is very similar but we have to consider the set

G. And what we choose to do here is to set G to the most generalization describable within

the given language and that's all question marks and that matches every possible instance,

because it's  consistent with two positive training examples shown in this figure, the G is

unaltered in the first two iterations. As was already said the set S is revised as in the breadth-

first search in all the three iterations. So the difference here is but in the third iteration G2 is

 revised  since  the  negative  instance  reveals  the  current  member  of  G2  is  a  version  the

generalization in G2 specialized along the possible branches of the partial ordering that leads



came up somehow down towards a member of S3. Along each such branch its specialized

only  to  the  extent  required  so  that  generalization  no  longer  matches  the  new  negative

instances so in done in a conservative manner.  The version space at this point contains the

members  S3 and G3, as well  as all  generalization  that  lie  between these two sets  in  the

partially for the hypothesis space. Subsequent positive trainings and may force S to become

more general while subsequent negative training in may force G to become more specific.

Given  enough  additional  training  instances,  S  and  G  may  eventually  converge  to  sets

containing the same description. At this point the system will have converged to the only

consistent generalization within the given generalization language.

I hope now you've got a feeling for the behaviour of these kinds of algorithms. I will end this

lecture by assigning a short comment on performance in general we don't focus much on

performance on this course but I want to mention one thing because it's also anyway repeat

something already said which has some importance. So if you look at this little table on the

slide and you look specifically at the storage space, you can see that for the version space

strategy when you look at the bottom right corner you see that the order of the space needed

is  only  proportional  to  the  size  the  number  of  elements  in  the  hypothesis  space  more

specifically of the order of the number of elements in S and elements in G, because only

those elements only defines the abstractions needed. If you move one row up you can see that

for the breath first you need to store of course the most specific generalizations in that case

but actually also have to store all the negative cases because in every step you have to check

that what the generalizations you and you proposed it need to be consistent with the negative.

While in the depth-first search you have to really store all instances, because in every step

you have to release both the positive and negatives.  So this  performance issue in a way

repeats some of the differences between the two the three algorithms so actually this was the

end of the second lecture of the fourth week and so the next lecture 4.3 will be on the topic

decision free learning algorithms so thank you and goodbye.


