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Welcome to this lecture on Generalization Search which is the second lecture of the fourth

week of this course in machine learning. For practical reasons this lecture will divide it up in

two videos, so this is part one. The outline of this lecture is as follows we will first start with

some general characterization of the aim of this approach, we will then look on the kind of

language and formalism we need in order to work with this framework and then we will look

at the two main categories of strategies for doing this, one we can say Generate and Test is

essentially it's a top-down approach where we in rate hypothesis and then search through the

instance space in order to iteratively test which hypothesis is optimal.  The other category

called data-driven strategies for generalization where we actually start bottom up from the

instances and we will systematically through control analysis but instead search what we call

the hypothesis space that we have built up, and we will look at three ways of searching the

hypothesis Base first, Breadth first and Version Space approach. 

So the purpose of this lecture is to compare various approaches to generalization in terms of a

single framework which we term here generalization as search. Towards this end, we want to

cast  the  generalization  problem  as  a  search  problem,  and  alternative  methods  for

generalization are characterized in terms of the such strategies that they employ. This lecture

is tightly based on a seminal paper by Tom Mitchell from 1977 called “Virtual Spaces: A

Candidate Elimination Approach to Rule Learning”.

So the preconditions for the problem we're going to look at are the following, so we have a

language in which to describe the instances which we call an instance language. We have a

set of positive and negative training instances of some target generalization that we want to

learn. We also have another language we call hypothesis languages, the purpose of this is to

describe  our  generalizations  and this  hypothesis  language  which  spans  what  we call  our

hypothesis  space.  And the hypothesis  space as we are going to construct  it  is a Poset (a

partially ordered set) organized by a more specific than relation that relates more general

concept to more specific. And then finally we need a kind of matching function or predicate

that can test at every point in time whether given instance and sum over our generalizations

match.  So  what  we  want  to  determine  Generalizations  within  the  provided  hypothesis

language consistent with the training instances we have which mean that they are consistent if

and only if hypothesis matches every positive instance and no negative instance in the data

set. This approach is dependent on two constraints, so first of all it's assumed the training

instance is contained no errors and it's also is constrained by the fact that it's important in



necessary that  the target generalization can be described in hypothesis  language we have

designed, So we can say that this is a theoretical framework because it cannot handle some of

these practical problems which are formulated here as constraints. 

Let's  start  with  saying  something  about  the  hypothesis  language,  so  the  choice  of  the

hypothesis language has a major influence on the capability visually of the learning system.

So by choosing a generalization language you fixes the domain of generalization which a

program  may  can  describe  and  therefore  learn.  So  most  systems  in  some  way  use  a

generalization  language  that  are  biased  in  the  sense  that  the  language  is  capable  of

representing only some of the possible sets of describe people instances not all. These biases

causes  both  the strengths  in  the weakness  if  it's  the  biases  inappropriately  chosen it  can

prevent the system from inferring the correct generalizations, if it is well chosen it can guide

the induction so it can actually enable inductive leaps steps beyond the information directly

given by the instances. So there is a bad side a good side of this kind of language, also the

choice of language has a strong influence on the resource requirements, so the complexity of

the hypothesis space, if you represent hypothesis space by graphs because the problem can be

exponential, while if you use feature vectors for example you can keep the complexity down

to linear, and also a language where the ordering you introduce is shallow and branchy that

will typically create a larger hypothesis set in contrast to wherever the ordering is narrow not

so branch in each step but rather deep.

With the approach we have taken the most important choice to make for a language is which

relation to use to relate our hypothesis. So our choice here is a more specific than relation

between hypothesis and the semantics of this relation is given as follows, so if we have to

generalization G1 and G2. G1 is more specific than G2 if and only if the set of instances that

G1 matches it's a proper subset of the instances that G 2 matches considering all the instances

and  the  matching  predicate.  So  you  should  note  that  this  definition  of  the  relation  is

extensional is based upon the instance sets that generalization covers, of course the definition

of the relation is also dependent on the language we have in the matching predicate. So the

more  specific  than  relation  imposes  of  what  is  called  a  partial  ordering  over  the

generalizations in the hypothesis space. It provides a powerful basis for organizing the search

through the hypothesis space. And finally one important fact is that in order for the more

specific than relation to be practically computable by some program, it must be possible to

determine whether G1 is more specific than G2, only by looking at the descriptions of G1 and

G2 without computing all the sense of instances that very much. So even if the relation is

defined  by  the  instances  it's  not  tractable  -  to  make  judgments  of  the  relation  between



hypothesis by locating instances. So this requirement that we have to be able to decide on the

validity of a relation in space of the description places restrictions on the way our language is

formulated.  Before  we  continue  I  want  to  say  a  few  words  about  partial  orderings,  in

mathematics  a partially  ordered set  formalize the ordering of the elements  of a set.  So a

partially ordered set or Poset consists of a set together with a binary relation indicating that

ordered pairs of elements in the set, such that one of the elements precedes the other in the

ordering. The word partial means that only a subset of pairs of elements are directly ordered,

as you can see for example in the example to the right where we actually look at subsets of a

three element set XYZ, we can you can see obviously that the subset consisting only the

element X is not directly order with respect to the subset Y said as an example, while it's

order with respect to the subset XY and XZ if every element in the set is order would we talk

about the total order instead.

Before we go on I want to introduce a simple example that I will use for this lecture, so the in

this example our instances will be unordered pairs of simple objects where each object is

described by three features, the features are shape, color and size and the feature values of

shape is square, circle and triangle the feature values of color are red, orange and yellow and

the features of size are large and small. And so actually the instance language if we look at an

example there you can see instance one is consist of two objects a large red square and a

small yellow circle. So that's a instance the hypothesis language in this case follows more or

less the same syntax, the only thing we do is a add a wildcard symbolized by a question mark

and actually the purpose is that is to function as a generalization for the features values of a

specific feature.

So it's a possibility here to generalize feature values but just in one step using this wildcard.

Let's now look at an example so a small example with just four, hypothesis structured in a

small network. So we have G 1 G 2 G 3 and G2 you to more general then the others and as

you see in the example, ordered from general to specific. So you can see here G1 is more

specific than G 2 and you can also see the G3 is more specific than G2 but you can also see

that because the way we define this network through the more specific than relation G1 and

G3 are not comparable generalizations even though the instances of G3 and G1 intersect, but

the sets belonging to these two generalizations do not contain each other.

So much about the hypothesis language and its properties so now let's look at different kinds

of generalization strategies. So on one hand we have the data-driven strategies and those will

be the focus of this lecture and, in that case the instance base is traversed systematically and

as a consequence the hypothesis space is then searched, and when we say we use one or the



other search strategy we talk about applying that such on to the hypothesis space. In Generate

and  test  strategies  we  essentially  we  start  from  the  hypothesis  space  by  traversing  the

hypothesis space, we look at the instance space and such that so it's a general to specific

approach.

First a few words about the generate and test strategies. So in generating and test we generate

new hypothesis according to some procedure and this procedure they're typically independent

of the data set of the input data.  So each generated hypothesis in the hypothesis space is

tested against the entire data set available and for every step the candidate hypothesis is either

identified as an acceptable hypothesis generalization or it could be viewed as a node to be

expanded further to create new hypothesis or one can say one can say it's a dead end and

prune it away. So generate and test strategies typically consider it is all data instances in the

data set at each step, for each new generated hypothesis to be tested. It is also an property of

this kind of algorithm is that because for each hypothesis they look at all the instances not

only single instances. They are not so prone to deteriorated in the presence of noise because

the noise will just be part of the stream of all the instances. On the other hand it's a problem

because if you if we have a batch learning approach it's fine but if you have an incremental

situation it's more of a problem bit because if new data comes up later in the process you may

have to re-execute the whole generate and test procedure. Also because of the fact that the

generate hypothesis is not influenced at all by the data the search can be quite expensive.

We will now start to discuss a number of data-driven generalization strategies so actually

many generalization programs employ search studies that are data-driven, which means that

we build up and hypothesis  space and then we revise what we believe  to be the current

hypothesis or the current hypothesis based on all the incoming data instances. So we will look

at three kinds of approaches Depth first search, Breadth first search and something called

Version Space approach, and for each of these approaches we will do four things we will give

some general characterization of the approach, we will sketch the prototypical area, we will

trace a simple example and give some comments on that little trace.  

Let  us  start  with  the  Depth-first  strategy.  So one of  the  strategies  for  utilization  from a

company is depth first in this strategy. We keep a single generalization like single hypothesis

as the current best hypothesis and we call this presentation we call it CBH, so the start search

start  by  choosing  taking  the  first  instances  and choose  a  CBH consistent  with  that  first

instance. And then we test systematically the CBH against the new training instances and we

altered the CBH and we can either alter it so it becomes more restrictive and this is because if

we encounter a negative observation that we will do not want to be covered, we can relax it



more because we also have to make it want to make it cover a new positive observation.

However when we alter  it we'll also have to look back at all  the previous observation to

ensure that we do not create an inconsistency with those instances already managed. And also

of course at every step there are not just a single way of altering the CBH consistent or good

you see there are many options we have to choose one and for all the options there are we

have to try them one by one and we do that in some order and if one of the orders later we

became obvious that what we have choice we have made is not the optimal one we made you

have to do some backtracking going back to that decision point and chain and take a second

choice. So drawbacks with this is it's very costly at every step to check for consistent with all

past  training instances  and also if  we happen to make the wrong choice  at  one of  these

decision points to backtrack, to reconsider the alternative choices at that decision point. 

On this  slide  you see  some pseudo code for  the  depth-first  search  strategy procedure.  I

already outlined for you informally how it works and essentially the role of the similar code

is  just  to formalize  this  one step further.  So what  you can see here is  pseudo codes  are

actually two parts in the beginning, one part that handles the negative case and as I already

said when you when we encountered a new negative instance is in this process of revising the

currently by best hypothesis, we need to constrain the CBH, so that it do not cover that new

negative instance. On the other hand there may be many ways of changing the CBH in that

direction,  so  therefore  we  have  to  consider  all  the  earlier  instances  so  we  don't  get  an

inconsistency. Similarly in the positive case, we may normally need to extend the CBH so

that it also covers the new instance to generalize the CBH, but when we do that we also have

many choices so therefore we also need to reconsider they're all the instances so we are not

extending it so much that it covers some earlier negative instances. And finally in the psuedo

code you can see the section where we come into a situation that we discover that we cannot

find a suitable revision which means that the probable situation is that we made the wrong

choice at an earlier point among all the earlier points we had,  so therefore we need them to

backtrack to it to the to that to an earlier decision point and I mean backtracking can have

many forms what we talk about here is the same version form of backtracking which is called

a Logical backtracking essentially we go back backward to the nearest decision, and find a

new alternative choice there, and so and of course that can be recursive because we have

many levels of decisions, so as already said earlier this can be a pretty costly procedure.

So let's look now at an example on how to run the depth-first search and on a trace for that

example. So in this example we have three instances, first we have two instances which are

positive and then we have one negative instance and what we what you see on this slide is the



current best hypothesis in three versions representing three steps of the depth-first search a

generalisation algorithm.

So  some comments  on  this  example,  so  the  first  positive  training  example  leads  to  the

initialization of the current best hypothesis to CBH1 which matches no instances other than

the first positive instances. When the second positive instance is observed CBH1 must be

revised in order to match the new positive instance and you should notice here of course there

are many plausible revisions to CBH1 in addition to see CBH2. What is not visible here is of

course  the  order  of  these  alternatives  but  the  system  picks  what  is  considered  the  first

alternative, yeah so now we go to CBH2. So after these two positive examples comes a third

training n cells which is negative and being negative it conflicts with CBH2 in this case all of

the ways to could be specialized to exclude the new negative instance. No such relation is

considered with the earlier observed positive instances already looked at.

Also one observation we should have her in order to understand the example is that the every

instance is an unordered pair of objects, so it doesn't matter in which order the two objects are

placed within the instance. But actually now and considering the third negative instance the

system  must  and  backtrack  to  an  earlier  version  of  this  current  based  hypothesis

reconsidering its  previous revisions to determine a CBH3 that  is  consistent with the new

negative instance as observed positive instance.

So this is the result in the end. For practical reasons not to make this video too long we make

a break here and continue the treatment of the other algorithms in the part 2 video. thank you

bye.


