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Lecture 15
Genetic algorithm

Welcome to this fifth lecture the third week of the machine learning course. The topic for this

lecture is genetic algorithms. So genetic algorithms is a specific an early representative for a

class  of  computational  models  called  evolutionary  computing.  As  for  all  efforts  in

evolutionary computing it's inspired by theories and models from evolutionary biology, so

genetic  algorithms are commonly used to general global solutions to optimization /search

problems.  Genetic  algorithm  particularly  useful  for  problem  domains  that  have  a  very

complex  optimality  landscape.  The  simplest  form of  genetic  algorithms  is  based  upon a

representation  of  chromosomes,  that's  the  data  items  in  the  form of  such  simple  binary

strings, with discrete functions for evaluating fitness of this chromosome fitness of the data,

and syntactically defined breeding and mutation operators designed specifically for the binary

strings.  The  idea  of  genetic  algorithm  could  be  engineered  for  much  more  complex

representations  on  binary  strings  that's  absolutely  possible  but  that  is  not  treated  in  this

lecture. 

So  let's  look  at  a  moment,  after  this  interdisciplinary  sources  of  inspiration  for  this

representation. So genetic elements are inspired by Darwinian evolutionary theory, an ideas

of  the survival  of  the  fittest  by natural  selection.  You can see  below some pictures  that

illustrate the functionalities of what this gradual organic development of the natural species.

So in Darwin's theory of evolution, populations changes over time and he was the first to

propose a feasible mechanism for how this happen. So if we look at the core components now

here so first of all what is the data set, the data set here is called the population and the data

set consists of data items, so in this kind of framework the dietary terms are data items are

called  chromosomes where each chromosome in any way datum represents one potential

solution to the problem at hand. And as I said earlier with what we discussed in this lecture

it's a very simple model where each data items is a binary string and so this means that in this
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terminology used in genetic algorithm the gene is one position in such a string. So typically

what we also do is a very basic operation is to rank each other chromosomes in a continuous

fashion, in a regular fashion so this means every chromosome, every data item in every step

of the process is evaluated by applying a fitness function, and of course the idea with all

process is to produce in the end the fittest chromosome, one chromosome that has the best

performance.

So what is the basic machinery of a generic genetic algorithm system then yeah the key issues

are the following, so we already talked a little about that the key the basic representation so

what happens is that we have this population of chromosome, then we have a computational

cycle where in each step the fitness of all the whole population is evaluated and then after

that a selection is made, subsets of the fittest from the population are chosen to directly be

included in the next generation and the rest are discarded. Then and the selected ones are also

allowed to mate, so actually pairs of the remaining ones, the ones who are fittest are allowed

to mate to general children to restore the population site. This mating is typically carried out

through a process called crossover which we will be I will describe a little later. After that

one also allow a step where the new set of data items or chromosomes can be randomly

mutated, when that takes place we have a new generation and then new cycle forms. 

So one very important ingredients in the genetic algorithm machinery is the fitness function

mentioned  earlier,  could  also  be  called  an  object  function  or  evaluation  function.  This

function looks at every data item and evaluates how close that data item is to a given solution

and because it has such a crucial role the success of an implementation of genetic algorithm

us depend on this very clever choice or of the fitness function. It's very important, the few

things  are  important  it's  very  important  that's  clearly  defined  it's  understandable.  It's

important that it generate intuitively reasonable results. It can be it, doesn't need to be simple

it can be complex but it should be easy to understand and it should create intuitive results. It

should also be such that it's efficient to implement because it will be evaluating many times

so if you can consider you have a large population and you run this many times there is a

computational  issue  here  involved,  and  syntactically  issue  it  is  supposed  to  produce  a

quantitative measure real value that can discriminate the chromosomes as much as possible.

So  it  was  mentioned  earlier  that  in  the  production  of  new  chromosomes  from  parent

chromosomes there are few key operations involved, so for mating between all chromosomes

the crossover operation is used and then there is also mutation operation normally applied. So

crossover them need some explanation, so single point crossover exactly essentially taking



two strings, two parents choosing one point in the binary string and essentially swap the all

the bits to the right of the power of that point. So as you see the examples the two parents left

part up to the crossover point remains the same while the right strings are swapped giving

then two children. And the alternative is to have multiple in crossover and which means that

in the case of two-point cross of over two points are picked randomly and the section between

the two points are swapped while the beginning and the end his remains the same and this can

be generalized to key point but that's not it very important. Okay so this is crossover. And

mutation operation is very simple it means simply to flip a bit at a random position. So the

binary representation   genetic  programming scheme is  a  very simple straightforward  and

appealing, but there are a number of drawbacks with this and I want to mention a few issues.

So it's crucial  and non-trivial  how the features of problems are mapped to binary strings.

Already when we talked about neural networks we realized that it's not necessary a simple

problem to take a set of features in some form and mapped them into the input layer of a

neural network. In the genetic algorithm setting this becomes even more tricky because if you

I hope understood that these chromosomes are changed and modified in a synthetic tactical

manner which means that the crossover for example operations we break the binary string

and there is various parts and it cannot happen of course that kind of cross over breaks apart

bits that anyway belongs to the same feature. So the modelling of the feature set onto the

chromosome binary strings is  a non-trivial  task.  Also the choice of fitness function in  is

absolutely crucial. So the that is also an issue because it's a single component in the system

and its behaviour it’s so important. Yeah and as I already touched depending on how the

feature values are modelled onto the chromosomes one may have to restrict the crossover

mutation operators, so they cannot produce non meaningful chromosomes from a problem

domain point of view. Also here that a lot of parameters, hyper parameters that those exist for

any system, I mention it for Neural networks but here there are many and these have to be

adjusted  typically,  and those parameters  are  such as  the  size  of  reproduction  subset,  the

mutation frequency, the various crossover policies etc. and then also a problem for this also

for as for your networks that the amount of computation needed are our typical immense for

for this kind of setup. 

So I have included a more detailed example here and it's a very simple example and on this

first  slide  you  can  see  the  setup  so  you  have  a  number  of  binary  digit  constituting  the

chromosome of the size of eight we have four data item’s we have a function of Fitness

function that counts the number of ones, and we have a crossover rate and which guides the



crossover functionality we have a mutation rate and so on. So the hyper parameters are set

and outline is done. So then in the next part of the example and the Fitness functions are

evaluated  and  normalized  and  then  the  crossover  operation  is  performed  and  then  the

mutation form which then creates actually a new population. And as is observed here it's not

always that it always goes locally in the right direction it can be so that some of the fittest

candidates  disappear  but  then  reoccur,  actually  when  one  very  good property  of  genetic

algorithm that is not sensitive for local optimization with which many other algorithms suffer

from. 

So for your convenience I included two other examples here, there are new aspects of these

particularly importance it's just that you can see some of alternatives examples of the first, the

first example is a solution to the Eight Queens problem, so as you can understand one issue

here is to code the positions of the on the chess board of the eight Queens in a form so it can

be mapped onto a chromosome. So in the second example you can see the problem is to

maximize a numerical function, so this is just another kind of case. 

So then the question is how does genetic algorithms relate to learning and of course there can

be many possible  connections here but,  the one I  want to mention at  this  point is  called

classifier systems. So essentially a classifier system is production system as it was described

in one of the earlier lectures in the first lecture this week and essentially what one does in a

classifier  system is that the production rules of a production system are mapped onto the

binary strings or a genetic algorithm. I knew already seen some sites ago you need to do this

marking so for the 8 Queens problem you have to do it in some way, well maybe do another,

so of course nothing prevents that you can take the symbolic rules of a rule based system or

production system and map them onto the binary strings. So this means in a way that you can

utilize the functionality of the unical going so that the population the data set is exactly a

number of data items or chromosomes that are equivalent to an initial rule set that is supposed

to solve a certain problem. So but then of course you need a separate model of this module in

the system so where you in every generation apply this system the current generation to a

specific  problem and typically  that  module acts  a lot  like what was described in  almost

previous slides on rule based systems, so essentially there is a some kind of inference engines

that tries out which satisfies, matches the problem at hand and of course you also mean then

in  the  system  some  reinforcement  feedback  so  that  credit  and  blame  can  be  given  to

individual  contributing  classifiers,  and  there  is  actually  an  argument  algorithm  for  that



compacted brigade every which is it's  very similar to what in the neural  network case is

called back propagation.

So the feedback to the individual classifiers from the result of the application of the rule set

for the basis for the fitness evaluation of the population, but for the rest you know you normal

genetic algorithm machineries run which means that there will  be a new generation rules

every time the new unit will fight again to the problem there will be feedback generated that

will be created a blame to the to the individual classifiers and so on and so on. So this is one

approach to combining a learning scenario of a rule-based system to the genetic algorithm

setup. So in this  line it  is just  a repetition of what I  said a little  earlier,  so essentially  a

classifier system is a combination of a generic algorithm running and a kind of rule-based

reinforcement based system so essentially  have a rule based the rule base you see in the

picture the constitutes the population genetic algorithm. But in every step of the process this

rule based is applied to a certain problem task and the result of that problem solving is then

fed back in into the into the root system again so that credit  and blame are given to the

individual rules and then the credit and blame the distribution of the rules are used as the

basis for the fitness function and then the genetic algorithm creates a new direction and so on.

So this was the end of the fifth lecture this week, so the six lecture number six will be on the

topic of logic programming. thank you goodbye


