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Lecture 13
Bayes (ian) Belief Networks

So welcome to the third lecture of this third week the course of machine learning. The theme

of  this  lecture  will  be  Bayes  or  Bayesian  belief  networks.  So  starting  with  the  general

characteristics  of  a  representation,  a  Bayesian  belief  network  abbreviated  as  BBN has  a

number of synonyms you can call Bayes network or Base Model network, or Belief Network

or you can call it a Decision network or some lengthy elaboration like probabilistic directed

acyclic graphical model. So essentially BBN is a probabilistic graphical model representing

the set  of variables  and their  conditional  dependencies  and as a structure it  is  a  directed

acyclic graph or that DAG. So a BBN enables us to model and reason about uncertainty.

BBN's accommodate both subjective probabilities and probabilities based on objective data,

but we in both cases we talk more on assertive probabilities rather than probabilities based on

frequencies.  The most important  use of BBN’s is  in revising probabilities  in the light  of

actual observations of events. So if you look at this little example to the right where you have

three variables, rain it's raining or not, there is a sprinkler on or not, the grass is wet or the

grass is not wet. And so one can say there is a this kind of graph represents some causal

dependency, so the rain can make the grass wet directly, the absence of rain can affect a

person to put on the sprinkler, and when the sprinkler is on the grass gets wet. Yeah also so in

a way you can look at consider this kind of network in a forward manner starting from the

course and looking at the consequences, but you can also do it backwards so you can see “Oh

is the grass wet” but is it probably for the grass it is actually wet and then when you get data

on oh but the grass is wet, you can infer probabilities of the likelihood of certain courses

whether  it's  more  likely  that  the  sprinkler  was  on  or  that  it  was  really  raining.  So  the

backward reasoning here is more of the end purpose of this kind of representation. So one

key theorem from probability theory is called Bayes theorem this theorem as a fundamental

importance  for  the  way we want  to  use Bayesian  networks  for  problem solving actually

Bayes theorem talks about the situation where we have two variables A and B where B is



dependent on A or we can say A causes B. So about three kinds of probabilities that can be

considered here it's the independent probability of A we call it P(A) and similar for B we

have  the  prior  probability  of  B,  P(B)  which  means  considering  the  probability  for  B in

isolation. Then we can talk about the conditional probability so we can see initially can talk

about the conditional probability for B given A and the and vice versa. So the condition for A

given B. Finally we can talk about the joint probability for both A and B considered together

and the joint probability for A and B can be proven to be computed as the multiplication of

P(B|A) and the conditional probability of B given A.

P ( A|B )=P (B|A )∗P (A)/P(B)

And what is more interesting is how we can reason in this kind of Network backward so it's

the  case  that  for  many  domains  it's  more  likely  that  we  know  the  data  to  support  the

conditional probability for B given A which means is the for in the forward Direction, for

reasoning from cause to effect.

So  therefore  it  would  be  very  practical  to  have  a  theorem  that  can  infer  the  opposite

probability the reasoning from effect to cause instead of directly observing it. So I am happy

that the Bayes theorem does exactly that same, what the Bayes theorem says that we can infer

the conditional probability of A the cause given B the effect to be exactly the conditional

probability of B given A time's the prior probability of A divided by the prior probability of

B. 

So the intuitive meaning of course then is that Bayes Theorem really defines how one can

infer a conditional probability for a course giving us a probability of a symptom, what you

can see to the far right here is just a graphical intuitive way of defining that kind of proof that

can be given for this theorem. 

So let's  now look at  the  core  components  of  this  representation  and so Nodes represent

variables  in  the Bayesian sense as described earlier  can be observable quantities,  Hidden

variables or hypotheses edges represent conditional dependencies. So each node is associated

with the probability function that takes as input a particular set of probabilities for values for

the  nodes  parent  variables  and  outputs  the  probability  of  the  values  of  the  variable

represented by a node. So a prior probability if we look at the example to the right, is the

same we looked at earlier we have rain we have the sprinkler on we have grasswet. So the

probably of rain is given then by the two probabilities for the true feature values so if rain is a



feature it can have the value true we the 0.2 probability and it could have a value false with

its 0.8 probability. So then if we look to a conditional probability in this case we look at the

probability of the sprinkler is on given that it's rain, so we can see here that we have two

cases so either it doesn't rain, the rain is false and then it's a 0.4 probability to the sprinklers

on and it's a 0.6 probability that that was sprinkler is not on. In the opposite case when it

when it when it's really raining it's a much lower probability that it's the sprinklers on so it's

very rarely do you put on the sprinkler so in 0.1 case you have a sprinkler on. So to these

kinds of small tables are really the key information connected with each node in this kind of

belief network either prior or conditional and you see depending on how many connections

there are how many input edges there are 2 node you get a larger a table because typically

you describe the probability function here in terms of a table, of course also it depends on

how many feature values there so if there are it happen to be more than true and false while

he was an ordinal feature then also the table grows in in size. You also see on this line that

the joint probability function there is a way to calculate that from the prior probabilities and

the conditional probabilities and one can do that in a format manner so as been remarked

earlier and it's more likely in the main that we information about all these probabilities in the

forward Direction starting from causes and moving towards effects.

So let's then look at a minute at related examples so you recognize three of the variables, rain

sprinkler and wet grass what we did now was that we included a fourth variable called cloudy

and changed the structure so that cloudy effects sprinkler and cloudy effects rain but as you

see the connection between rain and sprinkler disappeared so this kind of alternative Network

is based for discussing another phenomena which we call conditional independence and I will

talk about that in the next slide.

Conditional  independence means that nodes that are not connected by any path represent

variables  that  are  conditionally  dependent  on each other so as you see in in  there in the

alternative example where we changed the structure, sprinkler and rain is no longer related

because there  is  no path between them so therefore sprinkler  and rain are  considered as

conditionally  independent  and  it's  kind  of  obvious  that  the  conditional  dependency  of

sprinkler  given  cloudy  is  one  thing  and  doesn't  change  anything  to  include  rain,  so  the

condition sprinkler given cloudy and rain is to say as the first. So in this case the probabilities

for the network can be calculated as below on this slide and as you can see the nice thing here

is that we can calculate the joint probability for all variables just by following the structure of

the network in a formal manner, so we essentially the joint probability is this product of the



prior probability for the independent variable times the conditional probabilities for the two

middle variables that all depend on cloudy and finally on the conditional probability of wet

grass given the middle two. So this is a nice property of this kind of networks that we can do

this  kind of forward reasoning just  following the structure of  the network and using the

probability table probability function in each node. So the examples we've shown earlier here

are of course very small so to exemplify the principles however in realistic cases and here on

this slide I've included a more realistic one these kind of networks are large and can be very

huge however and due to the properties of the Bayesian networks that will try to illustrate in

the last few slides it should be scalable and manageable, but the example here is more the one

you would face in reality. Yeah so now I want to talk about a few structural issues concerning

this kind of networks, so one key thing is to understand that a Bayesian network cannot

include a cycle so you see here the left example, you see a valid the direct did a cyclic net

graph and even if one of the arrows seems to point upwards this is more of depiction problem

and and doesn't really cause any harm however as you see in the right example and the arrow

between A and C is now directed in the opposite direction creating a cycle and hopefully you

have understood from the way this kind of reasoning behaves is that it's strictly based on

working  either  entirely  in  the  forward  direction  or  in  the  backward  direction,  and  it's

impossible to handle at this kind of cycle.

So the next structural aspect I want to mention is that of course when you study the same

networks you can see patterns and there are patterns of different kinds but  there are few very

basic patterns and as you see here are three examples Sequence which is kind of obvious

convergence where we're two variables cause a third and divergence where one variable have

to two causes, so at that point we will not do much about this and it doesn't really we're not

going to use the knowledge of patterns  like this  but  when you handle  big networks  and

especially if you want to modify networks and extend networks these structural aspects and

the ability to treat these cases in a uniform fashion is more important.

So if we turn to problem solving for this kind of representation it's already said that the main

idea is to use the networks to infer probabilities of causes from the probabilities of effects so

because they are Bayesian network is a complete probabilistic model of the variables and

relationship describing effects in terms of courses. Inferences typically aims to update the

beliefs concerning the causes in the light of the new evidence, so backward inferences in a

Bayesian network can be viewed as the answering all queries about the state of a subset of

variables  (hypothesis  variables)  or  the  variables  that  are  the  potential  causes  when other



variables  are  observed  typically  those  considered  the  evidence  variables.  And  the  main

vehicle for making this inference in the backward direction so to say is the use of Bayes

theorem which actually states that the conditional probability of the hypothesis given some

evidence is equal to the conditional probability of the evidence giving the hypothesis times

the prior probability of the evidence divided by the prior probability of hypothesis. 

P (H|E )=P (E|H )∗P (E)/P (H )

So this  Bayes  theorem enables  the  carrying  out  of  one  inference  step  backwards  in  the

structure.  But  because  of  the  homogeneity  of  the  structure  this  kind of  inference  can be

recursively applied throughout the whole structure using the Bayes theorem in each step.

So what does learning mean in this kind of representation yeah actually there are two kinds of

possibilities for learning, one kind of learning we call  it  a parameter learning and as you

understand  the  only  parameters  basic  parameters  that  we  have  are  the  conditional

probabilities given a fixed variable structures, so we then assume we have a fixed number of

variables and we have a fixed number of edges connecting the units corresponding to the

variables,  and in for every node we have this kind of table that describes the probability

function for the conditional probability for that node. And essentially the low-hanging fruit

here is of course to be able to manipulate and enhance the quality of these tables across the

network so it  better  reflects  the an adequate decision making for the domain and that of

course can then be based on available  data but this  is  kind of obvious very standardized

learning process.  What  is  more tricky of course is  to  learn in  the sense of changing the

structure and one level there is of course to assume that we have the same variables which

means that we have the same nodes but we can modify the structure of edges among the

number the number of edges among the two nodes, even more advanced to the same is the

addition of new variables,  typically is not so likely that we want to modify the low level

evidence we can say this is the input layer of the structure and not necessarily so the most

abstract hypothesis it's rather that it's more likely that we want to create some in-between

variables which are non-observables and we could call them Hidden and you will see that

there is a parallel here in the thinking about the world networks where we also will talk about

input layer output layer and hidden layers. So this was the end of this lecture thanks for your

attention and the next lecture will be on the topic of Neural Networks so thank you and good

bye.


