
Lecture – 22.3
Generative Adversarial Networks – The Math Behind it
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So, so far what we have seen now, I'm going back in history and back in the past and starting as a scientist

finished model 23.2. So, so far what we have seen is that an intuitive explanation of GANs, you had this

generator, a discriminator you had this minimax objective function which you minimize with respect to

the parameter of the generator and maximize with respect to the parameters of the discriminator,

Refer Slide Time: (00:36)



and then we saw this over all algorithm 
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for training 
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them, 
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which alternates between the generated parameters and the discriminative parameters, 
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Okay? 
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Now, 
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we want to look at some math behind this intuition. Right? So, all we have done is you have set up an

objective function and just assume all of that will work, we are not even defined, what does it mean by

saying at the end the GAN, that we trained actually works what does it mean? 
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So, let's start with that, Right? So, we'll delve a bit deeper into this objective function and see what it

implies? So, suppose you have this true data distribution, Right? So, you are given this training samples,

Right? And from these training samples these are all the amnest images, each block is 1 amnest image,

now these training samples and this samples actually come from some distribution. Right? On the other

hand you have this generator which is also generating images and I can say all of these images are coming

from the another distribution which is p of G, x, both these distributions are on top of x, where x is your

images 1024 dimensional or n dimensional. So, both these distributions are over the same set of random

variables, but one is the true distribution, one is the generated distribution. Okay? If everything works

fine, what do you want to happen at the end, pG, x,  is equal to p data x. Right? That’s what we mean



when we say that it should work. Okay? But is this the object, if that was the case we should have said

this as the objective function, Right? we should have said that minimize the KL divergence between these

two or whatever other probability distance function that you know how? Right? But we didn't do that we

use some other cryptic objective function which depended on some cross entropy or some score and so

on, Right? So, what we need to show is that and the reason we did that is because we did not have a pG,

x, Right? We did not explicitly model pG of x, unlike Auto regressive models or RBMS or VAEs there

was no p of x in this generator, Right? We never came up with the formula for p of x, that's why we

couldn't have that as the objective function, all you can hope for is that whatever this pseudo objective

function,  we have set  up that  eventually leads  to this  condition,  even though we have explicitly not

computed p of x or p of Gx, does that make sense, is it. Okay? What we need to actually show, is that

clear nothing. Right? So, So, what you want to say is that. So, here's let me state it this way you want to

show that if the discriminative loss function, is at its minimum value, can I guarantee that that can happen

only if pG is equal to P data, is that fine, is that a good statement. Okay? So, we'll try to prove that, Okay?
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So, here's this theorem statement. Right? This is from the paper, that the global minimum of this training

objective rate and this max V of G, D, is nothing but that two part objective function which I had written

it. So, this V of G, D, is just that two-part objective function which I had written where you have an

expectation over the true samples and an expectation over the generated samples, Right? and I am trying

to maximize this with respect to the discriminator and I have to show that. So, actually yeah! So, here's

the theorem and I'll just explain what it means. So, remember that the goal of the generator is to minimize



the maximum of this value, wait it's a first you have the discriminator you compute some loss function

with respect to that and the goal of the generator is to minimize the maximum value of that, is that fine?

Because it's minimize or maximize, is that fine, everyone is. Okay. So, now the theorem states that this

minimum will be achieved if and only if pG is equal to p data, Right? So, what it means is that whatever

objective function I have setup, if I'm able to achieve that objective function then, I can be sure that pG is

equal to P data, which would have actually been my true objective function, is that fine, is a statement of

the proof clear, if I prove this then, you'll be fine, that I mean we have gone back to our original goal and

proved it, Okay? Now, any theorem which has an if and only if part can always be split into these two

parts Right? the if part and the only part. So, they've part is that if pG is equal to P data then, the global

minimum of the virtual criteria would be achieved. Right? And the only if part is that if this is achieved

then pG has to be equal to P data, there is no other way that could have been achieved you get the

difference between the if and only if part. So, if, if pG is equal to P data then, this will go to its minimum

that's fine, but if only if part is the reverse of this which means that if I know that this has gone to this

minimum value then, I can be sure that PG has to be equal to P data. Right? So, I have to prove, prove the

F part as well as the only if part. Okay? 
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So, here's the outline of the proof, we first look at the if part and then we look at the only if part. Okay?

So, the if part, to show the if part I will show the following first, I have to find this value of D, G when

PG is equal to P data, because that's what the if condition says. Okay. So, I'll find what this value of V, D,

G is or rather actually C, G is. Okay? Then I'll find the same value when PG is not equal to P data, Okay?



So, I know what the values when PG is equal to data, I know what the values when PG not equal to P

data, for any pG, any other pG. Now, what do I have to prove, to prove the if part, first one is always less

than equal to. Right? Minima, is that fine! So, when PG equal to P data whatever value you get that's

always less than equal to the value, when you get when PG is not equal to P data, is that fine? So, that's

the third step that I need to prove that show that is less than equal to less than B or less than equal to, is

also fine, is that. Okay? Everyone gets this three parts, I'll show what the value is, when P is equal to P

data I'll show what the value is when PG not equal to P data and then, I will show that A is less than equal

to B, if I can show that then, I can show that the minimize are chained only when PG is equal to P data, is

the outline of the proof clear, does that make sense, anyone, who does not get that, please raise your

hands, if you get this. Okay. Now, the only if part is that when this minimum is achieved, I need to show

that PG is equal to P data that means, if someone tells me that I have achieved the minimum, then it has to

be the case that PG is equal to P data, is that fine, the if part and the only if part. Okay? So, let's start with

the if part and we look at the first step of the if part. 
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So, this is the objective function, now what I'm going to do is, I'm going to replace the expectations by

their integrals. Okay? And now I'm going to observe that first of all, observe that this is nothing but x, this

is the generated x. Right? So, I know that this G, Phi of Z, is a function of Z. So, by this some cryptic rule

actually, I  can replace the second integral which was over Z by an integral over corresponding x is,

everyone Okay? With this, the first integral has been copied as it is, but the second integral has been

replaced by a different integral instead of Z. Now, I have an integral over x, why does this make sense,



what is the rule that I've used here? I've used change of variables that's a valid answer, but there's a slight

problem there when you do change of variables, you have to assume that the function is invertible, we

don't know whether G is invertible or not. Right? Okay? So, I'll give you an interview to explain intuitive

explanation for why this makes sense,  this  actually comes from something known as the law of the

unconscious statistician, I don't know who named it that way, but I'll give you an intuitive explanation for

why this is Okay? Right? So, we'll try to understand, what this integral tried to tries to do and then say

that it's, Okay. If I replace it by this integral, Okay? So, the first integral is actually over Z. So, these are

all the Z’s that you have. Okay? Now, given as Z is G, Phi of Z, a deterministic function or a random

function? A deterministic function. I'm going to pass it through the neural network for a given Z, I am

always going to get the same X, no matter how many times I pass it, Okay? So, from the Z domain to the

X domain what kind of a function do I have, many to many, one to many, one to one or many to one, can

two different Z’s give me the same X, in two different sets give me the same X, that's possible. Think of a

simple neural network with just, just classification. Right? you could give it to Apple images for both of

them, it can give you the same output. Right? So, for two different inputs I can get the same output, but

for the same input, can I get two different outputs. No. So, then what kind of a function is this, many to

one. Okay? So, there could be many Z's here which correspond to the same X here. Okay? Is that fine?

Now, this integral  is  actually over the Z's,  I  am integrating over these Z’s based on their  individual

probabilities, is that fine? But now if I look at the X's their probabilities are actually just a function of

these two because these if I just sum up these two Z properties I will get the probability of the given

corresponding X, does that make sense, if all of these are say point one, point one. Okay? And only these

two Z's result in this X and what's the probability of that X going to be, point two. Does that make sense,

Okay? So, now instead of summing over these Z’s, I can just sum over the X's and replace the probability

of Z by the probability of X, Right? because whenever summing over the Z's, I was summing over these

Phi terms but it turns out that these Phi term just collapse two three terms in the X domain. So, instead of

summing over these Phi terms, I can sum over those three terms and replace them by the corresponding

probabilities, does that make sense, please raise your hands, if it does? So, that's the intuitive explanation

for why this works and there's actually a law behind, that you can go and prove it more formally, but you

understand the intuition, that's fine. I don't care if you don't really know this law, because even I don't

know it’s Okay? So, that's how you will replace the Z’s here by X's here and the reason I am doing that is

I have an, already have one integral with respect to X, I wanted the second interval also, to be with

respect to X and the second thing was I wanted P data and PG. So, I now have P data and PG, does that

make sense, Okay? And remember this PG is actually a function of p, Z. You can write it as that, is it

Okay? Fine. 

Refer Slide Time: (11:43)



So, now this is our revised objective function. Okay? Now, when will this, achieve the inner thing, Right?

if I look at this when will it achieve its maximal, maxima, when for every given X, the term inside the

integral is maximized. Right? So, instead of integral, just think of it as a sum. So, you have a sum of some

terms, you want to find the maximum of this sum. So, the sum would be maximized when every term in

the sum is maximize, does that make sense. Okay? So, then I just look at the quantity inside the integral

and I'll take its derivative with respect to D and set it to zero, Okay? So, I will take the derivative with

respect to D and set it to zero, Okay? Can you help me in working this derivative, what will be the first

step? P data upon 1 by period upon D, X into 1, plus PG over. Okay? I'll just write it is that fine, Okay?

Now, I can just do some simple I'll take one term on one side. Okay? And I want an expression for D theta

X,  completely sure, it looks like it matters but I am not completely sure of the implications of that, Right?

whether it matters to this achieving its final objective or not I am not sure that I need to work out Okay?

So, we will come back to that let's not confuse the others about that. Okay? So, for now just see that this

thing Right? So, you get the optimal discriminator, what is this D theta of X, is it a distribution, is it a

score, what is it? It is score. So, what does it mean, that I will give you an X, the score, the best score that

the discrimination assign, it is just take P data of X and divided by PG of X plus P data of X, Right? that's

the optimal discriminator, is that fine. Okay? 
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Now, for any given generator, if I give you the generator, then the optimal discriminator is given by this,

Okay? But what is the condition that we had in the if part of the theorem, P data is equal to PG. So, if I

substitute that here what do I get, half, Right? So, that's why when you end training your discriminator

should actually irrespective of whether it's a true image or a fake image it's so confused that it just assign

the score of 0.5 to both, I can't really distinguish. So, I'll just say with half probability that this is real or

half cloudy that this is fake, Okay? That makes intuitive sense, Okay? So, now this, this quantity, Right?

that we were interested in or rather the max of this quantity, I'll just substitute the max for each of these

guys inside that's the one which we have computed here. So, I'll substitute that, and this is what I get,

Okay? Is that fine, what is this integral, what is this integral, one, Right? integral over power density

function, what is this integral? One. So, what's the final output answer that you get, oh wait! So, this

should be plus, all I think this should be minus. So, what you'll get is minus 2 log 2 which is minus log 4.

So, this is the value you achieve, when PG is equal to P data. So, I have computed the value that you will

achieve when P is equal to P data that was the first part or the first step of my proof, is that fine? Now,

what do I need to do when pG not equal to P data what happens Right? 
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So, that's why we will go to the second part, we have done the first part. Now, you look at the second part.
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So, we will throw away this assumption, that PG is equal to P data, Okay? So, you look at PG not equal to

P data. So, let's see what happens in that case. So, I am not going to substitute half here, because half is

only when P is equal to P data. So, I'm going to work with when PG is not equal to P data, Okay? So, now

since I know that some where I need to compare with a log 4. So, this is some trickery that I'm going to

do, I'm going to add this term and you see that what I'm adding is just a zero, Right? because it's log two

minus log two, I'm just adding a zero. So, this is a fair thing, I'm only doing this because I know where I

need to reach and just trying some manipulation. So, that I reach where I want to reach, Okay? So, this is



not something which you can come up with this is because you know what the answer is. So, you have

added to this, I'm sure all of you have done similar proofs and different high school courses also, Okay? Is

that fine? I've added this effectively; I've just added a zero. Now, what I'm going to do is, I'm just going to

rearrange some terms here and there, Okay? So, first note that I can take this minus log two and this part

has one integral,  Okay? Is that Okay? And then each of these other log two is I am going to split it

between the remaining two integrals, don't try to really squint and try to  understand this, this is very very

simple, I genuinely mean that is just some rearrangement of terms and once you do all this, Right? what

you will end up with, Okay? Let's not go there. So, you will end up with minus log 4, plus some quantity,

can you tell me what this quantity is, first what is this? It's a distribution, what about this distribution,

what does this term look like? KL divergence between P data and the term inside the bracket and what

about this KL divergence between PG and the term inside the bracket, everyone gets that, Right? So, you

can just think of this as P and this is Q. So, you have integral P log or, Sorry! P log P by Q and integral Q

log Q by P or whatever, Right? So, you can just write it as sum KL divergence, Okay? So, it's actually the

KL divergence between P data and this other distribution, is it Okay? So, you have minus log 4 plus 2, K

L divergences, Okay? So, when PG is equal to P data this value is minus log 4, when I don't assume PG is

equal to period, I get minus log 4 plus 2, KL divergences. So, given two, these two statements, what can

you tell me, what do you know about KL divergence always greater than equal to 0. Now, can you tell me

something, Okay. So, let's look at the steps. 
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So, now at this point what I have done is, I have done the step two of the theorem of the proof, I have

shown you what is the value, when PG is not equal to P data, is that fine, 
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Okay? Now, what I need to show you is that the minimum is attained only when PG is equal to P data,

Okay. So, the general term is this, when for any PG any p data, Okay? Now, what do we know about the

KL divergence greater than equal to 0. So, what then, what can you say about CG, it's always going to be

greater than equal to minus log 4, that means minus log 4 is the lower bound, it's the minimum value that

CG can take, and when did CG take that value, when P is equal to P data. So, what are which proved now,

we have proved the if part,  if  PG is equal to P data then CG takes its minimum value, is that fine?

Everyone gets that, Okay? So, that's the end of the if part. 
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Now, for the KL or the only if part what I need to show is that if CG has taken its minimum value

someone has told me here's the CG and it has achieved its minimum value then, it has to be the case that

PG is equal to P data, Okay? Now, what's the minimum value of CG, minus log 4, we know that, Okay?

So, let's start with that. So, the general formula is minus log 4 plus this. Now, someone has told me that

CG has attain edits minimum value that means, what do I know CG is equal to minus log 4, that implies

that two other terms are 0. So, KL divergence of this, and KL divergence of this is equal to 0, Okay? So,

you can now prove that since KL divergence can only be greater than equal to zero. So, these two terms

cannot cancel each other. So, they both have to go to zero and you can easily prove that this will happen

only if PG is equal to P data, in fact you don't even need to prove that whatever I have written here is

actually the symmetric version of KL divergence and it  is known as the Jenson Shannon divergence,

Okay? So, this is actually the Jenson Shannon divergence between P data and PG and the Jensen Shannon

divergence would be zero, only when P data is equal to PG. Okay? So, whichever you want to prove it,

you can prove it either prove that this is equal to zero, I mean this equal to 0, implies that P is equal to P

data or just assume that this is equal to Jensen Shannon divergence not assume that that's the actual

relation and that will be 0, only when P is equal to P data, Okay? So, have you proved the, if and the only

if  part?  So,  what  have we  effectively  proved that  whatever  objective  function  we have  chosen,  this

minimax problem that we had chosen actually optimizing that that is the same as optimizing this other

objective function, which is PG should be equal to P data, that's what we have proved, this guy will attain

attained its optimum value only when PG is equal to P data, is that fine? Right? So, that's the more formal

proof about, why the particular objective function for GANS. Okay? So, with that I finally end the lecture

and eCos. So, thank you and I hope you guys enjoyed it and I hope you guys learned a few things and I



hope you guys do well in the end sem, and on the remaining assignments also. So, this end sem will again

we have the same flavor as quiz 1, it will not be of the same flavor as quiz 2. Okay? Thank you.


