
Lecture - 22.2

Generative Adversarial Networks – Architecture



Okay? So, now I have just with that we have seen an overall idea behind gas so you have the generator

you have the discriminator both of them are neural networks you have this minimax loss function run of

the one part is with respect to theta the other part is with respect to Phi and you alternate between these

two objectives of T and Phi Okay? Now what I'd not told you is that I just said that the generator is a

complex transformation which is a neural network Right? But, what is this neural network in practice

what  do  you  use  for  that  neural  network  whether  you use  a  feed-forward  neural  network  or  use  a

convolutional neural network. So that's what we look at in this module, what's the architecture used for

the generator what's the architecture used for the discriminator. Okay? and again there are various choices

here, 
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I'm going to talk about the most popular one which works very well right so that's something known as

deep convolution grants so the good thing is for the discriminator you can use any CNN architecture that

you want  so pick up whatever  is  your  favorite  architecture  VGG resonate  whatever  just  use  it  as  a

discriminator what would be the output layer of the discriminator, how many neurons will it have one

there is no SoftMax as we require an amazing it they'll just be one neuron that will give you a value 0 or 1

is that fine. Okay? So the discriminator will just be any convolutional neural network that you like any

popular architecture with one output  which tells  you whether this is  real  or fake. Okay? But for the

generator things are not so straightforward people experimented a lot with various architectures and this

paper which is cited here actually came up with this a set  of heuristics for what works well for  the



generator, and this is the network which they tried so let's look at it so you have this noise vector which is

hundred dimensional. Okay? From here you need to go to say a 64 cross 64 cross 3 output. Right? So, this

is an image of 64 + 64 cross 3 channels. So, this is your input, and this is your output so how do you go

from the input to the output so use a series of so let's understand each of these. 

The first thing that you do is see what is said here it's project and reshape. Okay? So what you're going to

do is you're going to take this 100 dimensional vector multiply it by an appropriate W, so that you get an

output of size 1024 cross 4 cross 4 what's the size of W going to be, that's the project part. Right? So,

what's the size of W going to be, you have this as the input this is the output this is RD this is our n what's

the dimension of W D cross n right is that fine but because n will just give you a vector again so what you

do is you take that vector and reshape it into 4 cross 4 cross 1024 is that fine everyone gets this. Okay?

Now what you do is you apply something known as transpose convolution because now remember we

have to go from 4 curse 4 curse 1 0 2 4 to 64 cross 64 cross 3. So, we have to actually increase the size

where is all the convolutional neural networks that we have seen they start with 64 cross 64 and come

down to a smaller size so we have to do the reverse operation now. So you have to use something known

as the transpose convolution so what's the transpose convolution, or in other words tell me how will you

do this operation that you go from 4 cross 4 to 8 cross 8 shall give you some hints- the operation is

transpose  convolution  you  know how to  take  transpose  of  matrices  you  also  know how to  treat  a

convolutional neural network as a feed-forward neural network where a lot of entries in the weight matrix

are 0. 

So in the first figure if you can recall that we had seen in the convolution neural network where we are

taking this M this timid converted into 16 inputs 4 cross 4 and then shown the second hidden layer and

shown a feed complete feed forward neural network and then remove some edges from it. Right? Do you

remember that vaguely of course you do? 
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Okay? So, I'll in the interest of time right I'll just tell you what I mean by this, so you can always think of

the convolutional neural network as a feed-forward neural network with sparse connections Right? So,

this guy would only be connected to these two Okay? Maybe for example, 
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This guy would be connected to these two and so on. Right? But, the other way of saying this is that all of

these are actually connected it just happens that these dotted lines which I am showing are zero weights is

that fine then I can write this as a normal weight matrix which goes from an n-dimensional input to a d-

dimensional input is that fine? Now what do I actually want to do I want to go from a d-dimensional input

to an n-dimensional input what kind of a transformation can I do W transpose I take the d dimensional

input applied W transpose to it I'll get an n-dimensional does that make sense avian gets that so that's the

inefficient intuitive way of understanding it. In practice you will have these API stencil flow and so on

which will implement this transpose convolution much more effectively. Right? Because if we do it this

way the way I said they're going to do a lot of these zero multiplications. Right? which does not make

sense you know that the output is going to zero but you are still doing those multiplications. Right? So,

actually it will not be implemented it like that but the way to understand a transpose convolution is that

you  treat  the  convolution  as  a  matrix  multiplication  operation,  a  very  sparse  matrix  multiplication

operation just take the transpose of that matrix to go from d to n everyone gets this piece raise your hands

if you get this. Okay? Good. 

Refer Slide Time (6:21)



So, that's what these inverse transfers sorry, transpose convolution operations are and that's how you grow

from 4 cross 4 to 64 cross 64 but how do you reduce the depth from 1024 to 3 how will you do that how

did you increase the depth from 3 to 1024. In a normal condition in your network by increasing the

number of feature maps or number of filters So, now I will keep decreasing the number of filters. Okay?

So, here originally you had 1 0 2 4 in the next layer you'll just have 512 filters and so on till you go to

three does that make sense. Okay? So, this is what the generator looks like this is a standard architecture

for  DC  Gant's  and  this  works  very  well  in  practice  and  the  discriminator  as  I  said  can  be  any

convolutional neural network
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Okay? 
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And here are some straightforward guidelines for having a stable deep convolutional neural net the stable

deep convolutional GANs. So if you go online and read a lot of literature about GANs one constant

complain is that it's very hard to train them the training is not very stable, you start getting nans you start

the disk media learns very fast but the generator lags behind and all sorts of things happen. Right? So,

that's why there's a lot of emphasis in coming up with stable architectures which learn well so DC gas was

one such interesting and important contribution where they came up with an architecture which works

very well and here are the standard guidelines that they had, so for the discriminator you do not use any

pooling layers and instead you strided convolutions what does that mean what does a pooling layer do



compression, what does trading do again compression. Right? Because you apply straight they are not

going over every pixel so you're going to get a smaller output, so instead of doing max pooling you do

strided convolution and for the discriminator sorry for the generator use fractional strided convolutions

what does that mean, that's the transpose convolution operation that we just spoke about Right? For the

generator you will have to use this transpose convolution operation. Okay. 
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Use batch norm for both the generator and the discriminator, remove fully connected layers from the

deeper architecture and use ReLU as the activation function for except for the output, which is going to be

tan edge and, use leaky ReLU for the describes. 

It all looks like very Blackmagic red you can use this use this and so on but this is come out after the lot

of experimentation and these are the configurations or these are the choices which led to the most stable

training. Right? So, you could just take this off the shelf and try to implement it and it should work better.

Okay? 


