
Lecture – 21. 2
Masked Autoencoder Density Estimator (MADE)

Refer Slide Time (0:14)

Now, the next thing that you're looking at is made, which is masked. Okay? Sure! So, what you're

saying is, that I have assumed a certain ordering of the random variables. But that ordering can be

different. So, it is up to you. Right? So, you could so what you're saying is, that I am assuming, that X

K depends one very thing from I to K minus 1. You want it to depend on a neighbourhood. Right?

both of these are assumptions. Do you agree with that? and the first whatever I have assumed Right? I

have assumed a certain ordering of the random variables; you could assume a different kind of

ordering. So, that this factor becomes one of the factors in the distribution. Does that make sense? It’s

not trivial, but you could do that. Okay? and also, I mean I know in when we're doing conversation

here and in networks we argued, that it only depends on the neighbourhood and so on. But we have

also seen other cases where it could depend on something at the top something at the bottom and so

on. So, this is a modelling choice which you are making. Once you make that choice these questions

are not really do not really exist Right? I mean you have made a choice that is going to depend on all

the previous pixels, if that's a choice you can use this if you're not happy with that choice you'll have

to do something different. So, then you have to talk in terms of whether the KL divergence between

the true and the approximate is similar or something, yes. It's again an approximation. Just as

variational inferences an approximation just as good sampling is an approximation this is also an

approximation. Yes. So, you're looking for some theoretical guarantees on the true distribution versus

this. I am not aware of those. If I don't think the origins of paper also has it but, you can go and check

but I don't think there is such a guarantee given on that. So, this is masked auto-encoder density

estimator. Density estimator is always fine with us. Now, given that auto-encoder appears in the name.

We're going to start with an autoencoder and then try to come up with a density estimator by

modifying it. Okay?

Refer Slide Time (2:03)

So, suppose the input is again n-dimensional, then what's the output of an autoencoder what's the

dimension of the output, and it's an input is n output is n. Now, coincidentally how many factors do

we have in the explicit factorization, or the chain rule n. Right? So, the question that I'm going to ask

you now is, that can we somehow tweak the auto encoder. So, that instead of reconstructing the input

using its n output units, it can instead predict these n probability distributions, that I am interested. Is

that fine. Okay? So, that's the question, that we are asking can we take a regular auto encoder tweak it

in a certain way. So, that instead of predicting or reconstructing it the input. it predicts these n factors

from our joint probability distribution. Okay?

Refer Slide Time (2:52)

So, what are these outputs going to be in that case. This is going to be P of X 1, P of X 2 given X 1, P

of X 3 given X 2 comma X 1 and so on. Right? Now, why is it not straight forward to do this with the

regular auto encoder. Because, it is fully connected. So, if it's fully connected every output unit sees

every input unit and that's not fine that’s cheating. Because you are trying to predict X 3 and you're

already seeing X 3 as well as everything that follows it, also. Right? So, we will have to do something

to make sure this auto encoder is not fully connected and we have to make sure, that when I'm

looking at X 3 there is no path to X 3 from X 3 X 4 onwards up to xn there can be only paths to X 3

from X 1 and X 2 . Does that make sense? Very same to what we had done in the made architecture.

Does that Okay? the same idea.

Refer Slide Time (3:47)

Refer Slide Time (3:49)

and so, what we're going to do is, that we are going to use masking again, which means, that we are

going to mask out some connections. So, that our output every node in the output is only connected to

the relevant inputs, and what are the relevant inputs, the ones which appear on the given side. So, it's

X3 given X 1 X 2 so X 3 should only see X1 and X 2. Does that make sense everyone? Okay?

Refer Slide Time (4:16)

So, what we'll do is we'll start by assuming some ordering on the input. So, we will assume, that your

inputs are order 1 to n Okay? say in the case of image as a straight forward you can just go from left

to right, and then top to bottom, and that's your ordering. Okay? So, I'm going to number these pixels

1 to 4 1 to n, and of course the outputs are also numbered 1 to n because it's X 1 probability of X 2

probability of X 3 and so on. Okay? Does this numbering make sense?

Refer Slide Time (4:44)

Now, what I'm going to do is, I'm going to assign random numbers between 1 and n minus 1. to every

node in the hidden layer. Okay? What does that mean? What Willi do with this numbering can you

take a guess? What would I want with the node number 2? It should only look at those inputs which

are less than equal to 2. Okay? Why what will then happen if I connect this part Okay? So, Now, let's

see, if I have the output node 2. What would I want the numbering of all the nodes, which appear on

the path from this output node to the input nodes less than or equal to 2? no sorry actually less than 2

less than 2 Right? So, does that make sense. So, that's where we are headed as we are going to

number these nodes make sure, that the number on the node defines, how many inputs is going to

connect it to or rather, which are the inputs that it is seeing, and from there we can connect a path

from the output to the input such, that the given output sees only the relevant inputs is the overall

idea clear to you. Okay?

Refer Slide Time (5:53)

Refer Slide Time (5:56)

So, let's look at it. So, let's for the input layer the interpretation is very clear, that if I have a numbered

node number 2, then it’s only going to look at inputs, which are less than equal to 2. Okay? that means

it's only going to be connected to 1 and 2, and if I have a input if I have a node number 3 then it's

going to be connected to 1 2 and 3 is that fine! Okay? This is straight forward, because it is directly

connected to the input and I know what the input numbers are. Now, if I look at the highlighted node

in the second layer or any subsequent deep layer. if I have the node number 2 again using the same

semantics, that it should only see the inputs which are less than or equal to 2. How do I ensure that? It

should be connected to nodes in the previous layer, which which are less than equal to 2. Right? So, it

should only be connected to those nodes, which I have seen less than or equal 2 na inputs, which

means those nodes which have a number less than or equal to two. Does that make sense? Again, gets

this Please raise your hands. If you get this.

Refer Slide Time (7:03)

So, Now, this guy will only be connected to all those nodes, which are numbered one to two. So, I

have got rid of many connections and only kept those connections which are relevant.

Refer Slide Time (7:16)

Refer Slide Time (7:49)

and now, I can take this all the way up to the output layer if I have a node number three in the output

layer, which are the nodes that it'll be connected to in the previous layer, anything less than equal to

two. I'm I think I'm making a I'm using less than equal to and less than interchangeably. But I think

that's clear from the context Right? So, this is only connected to these nodes these nodes in a turn are

only connected to certain nodes in the input, and those nodes are only connected to these two inputs

Right? So, I have transitively made sure, that the third output node only sees the relevant input nodes.

Okay? Fine?

Refer Slide Time (7:50)

Refer Slide Time (7:52)

This is again very similar to what I am dropping out certain connections. Very similar to drop out.

Okay? what's the loss function going to be lots of loss function going to be? Some of cross entropies.

What's the learning algorithm? Back propagation only through the relevant paths, and this thing which

I have shown here, it's just not for the sake of it. and I'm gonna explain what that mask is not. Right?

Refer Slide Time (8:15)

So, in this case, this was the old original fully connected W matrix. So, I’ll always have the full W

matrix. Only thing I'm going to do is, I'm going to use an appropriate mass to it to do the relevant

computations, and the way I had numbered these nodes. It turns out that if I apply the following mask

to the weight matrix. Right? Then it will ensure, that only the relevant nodes participate in the in a in

the computation. Right? So, I think this is very straightforward. So, look at the first column it's all

ones. I don't want to mask out any of these weights why? Because everything in this second layer is

computed, cut is connected to the first node. Right? Now, let's look at similarly for this layer. Right?

Everything in this layer is going to be connected the third node. So, that column has all ones I don't

need to mask out anything from there. Now, let's look at this layer. So, only the third node here no

only this these two nodes Right? Third and second are supposed to be connected to this node. So, I

have two ones over there. Is that fine? So, that's exactly what these masks are showing. We'll apply

this mask to the weight vector or weight matrix. It's going to be a harder met product, which reduces

some entries to zero and retains the others, and this makes sure that in your computation at the next

layer, only the relevant inputs are participating. Is everyone okay with this? Do I need to explain this

masking again?

Refer Slide Time (9:54)

The objective function is again going to be a sum of the cross entropies. The network will be again

trained using back propagation and the back propagation would only happen through relevant nodes

yeah! So, you do this random number assignment once. Right? After that the masking is hard-coded.

Manually do means you have to just define this mask matrix. Right?

Refer Slide Time (10:12)

Yeah! But this is just an element-wise multiplication Right? This is not an expensive operation. No so,

you don't need to randomly assign numbers to the nodes you can directly randomly created mass

matrix. Instead of going from the numbers to the mass matrix as defined the mass matrix. Right? In

fact, this explanation is done in a way. So, that you understand it but in practice you just have the

mass matrix, that tells you what numbers the nodes have. Yes! So, you have all images of size 32

cross 32 or something. Right? If you don't have images of size 32 cross 32 just resize them to 32 cross

32. Right? So, that's always assumed all the inputs will of the same size. Okay? Because these are

random variables. So, the number of random variables has to be fixed. Anything else?

Refer Slide Time (10:58)

So, again this model is not really designed for abstraction. But can you do generation using this

model. How will you do generation using this model? We just did need like five minutes back or ten

minutes back. How will you do generation? same thing. What will you do first sample a value for x1?

Feed that in, compute a value for P of x2 given x1 and you can do that, because it only depends on X

1 only those parts will be activated and you'll get a P of x2 given x1. Now, you'll sample a value of x 2

from this Bernoulli distribution feed that in. compute a value for X 3 you can do that because only

those parts will be activated. Okay? Again, feed that. Again, one pixel at a time you can do the

generation. Is that fine? Everyone okay with this okay? So, these are two fundamentals or almost

foundational auto regressive models that, you need to know. The idea is that you need to pick from

here are the following. One is you can work with the explicit factorization, where you have these n

factors without any independence assumptions. You can then use a neural network, to parameterize

this distribution. So, that you don't have an exponential number of parameters. The idea of masking is

central to both these approaches, because masking ensures, that only the relevant inputs contribute to

particular outputs. Because their outputs have a certain ordering, xi given X 1 to Xi minus 1 and this

masking ensures, that at the end of the day both of these are just neural networks. So, you can use

back propagation, and the last function is just going to be a sum of the Cross enterprise, and back

propagation only needs to happen over the relevant paths. This is not something new. They've already

seen this in drop outs. Even in drop words we ensure, that the backpropagation only happens through

are levant part. So, it's the same. Now, these are not state-of-the-art in the sense, that today when you

hear about autoregressive models, what people talk about is pixel RNNs and pixel CNNs. so, that's

what I want to do next. By next I mean today itself I'll just continue. So, I think it's already 12 o'clock.

So, people who have to leave can leave. The others can stay back. I need roughly half an hour more to

finish off pixel RNNs. It's again an auto regressive model. I'll make sure, that this recording is up

today itself. So, that you can immediately go and see it. So, people who want to leave can leave I'll

just finish off pixel RNNs also. Now, if you have lectures you can just. I just take a break for five

minutes and then finish. Right?

Refer Slide Time (13:37)

It isn't. But what you did is you started with an autoencoder which has n inputs and n outputs, and

tweak that into a desti density estimator I'm going to say destiny estimator. But, Okay? Right? So,

that's why I mean it's just I just wordplay in my opinion, but yeah, it's not really an autoencoder. I

mean the motivation came that, okay? you have this an autoencoder which has n inputs and outputs

and here again you have a setup where you need n inputs and n outputs. So, why not just take that and

tweak it a bit Okay? So, what are you going to do now, is something one is pixel RNNs? Which is

actually the basis of a lot of cool generative models, including wavelets. how many of you have heard

of wavelets? There's a Google music generation stuff. Right? It can go and look it up. It generates

pretty nice. So, the basis for that is pixel RNNs and that's what you're going to look at it. it's again an

autoregressive model. the moment I say Autoregressive model what does it mean the factorization,

that you are going to use is going to be the default chain rule. They are not going to be any

assumptions on that, and we the entire quest in proposing or building an auto regressive model, is to

come up with ideas such that, Xi only depends on X 1 to Xi minus 1. Right? The entire engineering

goes into that and that's what we saw in need, as well as made. We define the inst equations, or the

masks in a way, such that Xi only depends on X 1 to Xi mention that's the main part. Otherwise the

setup is clear you're given n inputs, you are given n outputs the outputs are actually going to predict

quality distributions. Right? and even the sampling part remains the same you are going to sample one

pixel at a time. So, all that remains same it's the only way they differ in it is how do you go from this

input to the output? while ensuring your criteria, that you should only look at the relevant. Right?

That's the only thing which changed. Okay? So, Now, with that in mind we are going to start, since

this is pixel RNNs. We are going to start with RNNs. Okay? And then kind of build towards what

pixel are RNNs and start with certain characteristics of RNNs. So, if you have a regular RNNs. So, let

me just see how to draw that. So, you have this input X. Okay? This rather Xi Right? So, you have X

1 X 2 and so on X 1X 2 and so on. Right? Now, what you have is first in s 1 and then s 2 Right? and

what kind of connection do you have from X 1 to s 1. sparse or fully connected. So, s 1 has some D

nodes. This every node in s 1 depend on every input in X 1. It's a fully connected layer Right? That's

what this is Right? and what about the connection from s 1 to s 2. it's fully connected every node in s

1 contributes to every node in s 2 Right? and that's obvious, because you have this matrix

multiplications Right? Now, a cryptic hint but if I want the input or if I want the output Right? S i to

depend only on certain inputs. Not all of them. That means is a fully connected network. I want a

sparse connectivity. What do we know which helps us in sparse connectivity? Asking okay? if I had

not done today's lecture. sparse connectivity. What kind of an operation allows us pass connectivity? I

just draw something in the meantime while you're answering. What operation is this is my drawing so

bad? What kind of operation allows us this pass connectivity? Convolutional neural networks how

sparse connections Right? So, how do you write a convolution operation? Instead of product how do

you write it? Wait what does this mean and use some kind of a filter, it will go over only some

portions of Xi and compute a new value. Right? So, it would mean that I have this Xi Okay? Now,

Right? Now, what I have is a U which is like a fully connected weight matrix. So, it all my outputs

depend on my inputs. Instead of this if I use a convolution operation, what would happen? I'll have

my inputs, I'll apply a convolution filter, every filter every pass of the filter or every stride of the filter

is going to give me forgotten everything in the board conditioner. It is going to give me one pixel in

the output Right? So, I'm going to get a similar-sized output. Except that every guy here only depends

on certain inputs. Right? Why am I ranting about this certain inputs depending on certain inputs,

because what are we studying? auto regressive models. What do you want there? That the outputs

should depend only on certain inputs? All I'm telling you is, that convolution operation gives you one

way, of making sure, that your output depends only on certain inputs. Okay? Is that fine is that Okay?

Fine! So, that's what a standard neural network does and standard recurrent neural network does, and

of course a LSTM is much more complicated, than that, but if you look at all you remember all these

five four equations, that you have for a list they're all similar. Right? you have a W you have a U and a

V have h t minus 1 XT and b. Right? What matters is all these are fully connected operations, and I'm

not Okay? with fully connected operations, because that means, every output depends on every input.

Okay? So, that's I'm not saying this is a problem with RNNs. I'm just saying, that this is what standard

are a means and LSTM do. Every output depends on every input every gate depends one very input.

Okay? Is it fine Okay? So, remember now, let's look at this gate again. So, say this is your f T and

your fT is going to multiply by s T minus 1. Okay? so, this is an element-wise product. This is an

element-wise product, but what I'm trying to tell you is, that every element here depends on all the

previous guys. Right? because it's a fully connected layer. Do you get that? So, you can think of these

as, if the dimension is D you have these D LSTM cells. Okay? But all of these cells are fully

connected to each other's output. the gate for the D th cell depends one everything, that happened in

the previous time step. Okay? So, all of these are fully connected. Yes, is that Okay? Have you in fine

with this. Okay?

Refer Slide Time (21:20)

So, this is just re iterating about LSTM Okay? Now, coming back to our goal our goal is, that given an

input and now, I'm going to talk only in terms of images. So, given an input it which is an image

which would be n cross M or I'm going to assume n cross n for this discussion. Right? So, this is an N

cross n input given to it. Our job is to compute n square probability distributions. So, you have this P

of X 1 P of X 2 given X 1. All the way up to P of X n squared given X 1 to X n square minus 1 is that

fine that's what our job is in a case of an autoregressive model. What's the other thing, that we need to

ensure? I have highlighted a certain node. What do I need to ensure? It only depends on previous

inputs and here we are going to define previous as the following. Right? You see the bottom figure.

So, here there is 1 to n square. Here again there is 1 to n square. There is a one-to-one mapping

between them. so, when I am going to compute the I th unit. It should only depend on 1 to I minus 1

that. Okay? That's what I want to ensure fine! and what pixel are ends do is they use something

known as spatial LSTM. Okay? We will see, what a spatial LSTM is you will have multiple of these

layers stacked upon one other. So, this is actually a spatial LSTM. I will define what it is, but you

have 12 such layers stacked on top of each other, and this is your final output layer, from here you are

going to predict these picks P of X i given X 1 to I minus 1 is that okay? That means this guy should

see only everything which appears before this and I should ensure that all of these in turn are only

dependent on these blue guys. Is that fine so I have to define my LSTM operation in a way, that right

from the input layer onwards I have this one-to-one correspondence between these layers. So, that I

know, that when I am looking at the I th guy here it only takes input from 1 to I minus 1guys. Right?

So, in particular this Ayad guy will only depend on these 1 to I minus 1 guys and I have to make sure

that in turn they also depend only off on the corresponding inputs Right? So, if I can ensure this for

every pair of layers all the way up to the input, then I have ensured that the output has only seen the

relevant inputs is the setup clear dude? How many of you are fine with this Please raise your hands?

Okay? Now, let's look at one such pair of layers okay.

Refer Slide Time (24:04)

So, I'm looking at so, I'm trying to I have computed this layer already and Now, I'm trying to compute

this layer. Okay? I want to make sure, that this red node in this layer only depends on their relevant

inputs from the previous layer. Okay? And all of these nodes that you see they are actually LSTM

cells. They are single dimensional LSTM cells. Okay? That means all of them have their forget gates,

all of them have their input gates, all of them have their output gates, all of them take an input, and all

of them take a give an output. Okay? and all of them also depend on the previous hidden state. Now,

what I need to tell you is, how do I define the input? and how do I define the previous hidden state?

So, that everything is closer and what do I mean by everything is closer? that every guy here sees only

the relevant inputs. Is that Okay? Fine! So, Now, let's look at this LSTM cell. So, what I'm going to

ensure is, that in a normal LSTM cell. All these inputs all these n square pixels that I have shown here,

would have contributed to this one cell. Right? that's exactly the case which I was trying to make on

the previous slide, that each of this is fully connected. So, even if I look at the red guy in the top layer.

It would have been fully connected to everything from the previous layer. Do we want that no we just

want to work within this boundary? Okay? let me just we just want to work within this boundary

Okay? So, the way you define this spatial LSTM is, that I will first apply a convolution operation for

every row on the previous layer. Okay? Is that fine? So, let's see this. So, I have this previous layer.

I'm going to apply a row-wise convolution operation, or a one-dimensional convolution operation.

Okay? that means I'm going to take a filter and slide it across the row. What is the output that I'm

going to get? Another row Right? and every pixel in that row would depend only on the previous

pixels. Is that fine? Ever one okay with that? So, if I take this input, which I had and I apply a

convolution on, that then I'm making sure, that in the output of the convolution every guy only

depends on the previous inputs. Is that fine? Everyone ok with that Okay? So, now, from this you can

imagine, I have taken one more from here I've computed an intermediate layer, from this layer I have

computed an intermediate layer, where every pixel now, depends on the previous convoluted pixel.

Okay? It only depends on the previous guys, it does not depend on any kind fine Okay. So,

Refer Slide Time (27:16)

Now, let's imagine this is the output of that convolution here. Where every guy only depends on the

previous input. Now, I want to compute the next layer from there, and I want to use an LSTM. Okay?

If I want to use an LSTM, I need to define two things I need to define the input, and I need to define

the connections from the previous state. These are the two things, that I need to define so Now,

suppose I am at this point the input to the LSTM is only going to be this pixel and the previous pixel.

Okay? Is that fine? What's the problem with this? What did I want the pixels to depend on all the

previous inputs? What are done? Now, only one previous one. So, I have to give a justification for

that. Okay? But I will come back to, that for now. Is it ok okay? Now, the other thing which I'm going

to do is that for this guy you can think of all of these as ht minus 1. These are the things which have

already been computed so far Right? So, Now, one and the standard LSTM what I would have done is

this guy would have been connected to all of them. Right? So, I'm not going to do that I am again

going to define a convolution operation which ensure that this guy only depends on this row. It only

depends on the three pixels above it. You can imagine a convolution operation which does, that it just

takes the previous row, applies a three cross one mask on it three cross one convolution on that.

Okay? So, you'll get a new row. Every guy here depends on, three guys around here. Right? and now,

this guy can feed to this input. Is that okay? it's okay, if you don't understand the details of the

implementation, but can you imagine, that I am only making it dependent on the previous three pixels.

Now, these three pixels in turn depended on three pixels from the previous layer.

Is that fine okay? and what was the input to this guy? Is that fine? What was the input to this guy?

This and so on. Right? So, in turn because of this transitive thing this pixel has now, become

dependent on all the previous pixels, that it had. Is that clear? Do you get this? Previous answer if you

do.

Refer Slide Time (29:55)

So, what I was saying is, that this layer has been computed. Okay? Fine! and now, I'm interested in

computing this value I need to ensure that it depends only on the previous guys that's what my goal is

Okay? it's a goal cleared everyone Okay? Now, each of these things each of these pixels here, is

actually an LSTM, that means it has an input gate, it has an output gate, it has a forget gate, it takes

input from the previous layer, that's the X, and it also has recurrent connections from h t minus 1.

Okay? Now, what I am trying to define is, X and H. so, forget everything that we did so far, I'll just

start fresh I need to define X and H so what I'm saying is that the X is just going to be this pixel and

the previous pixel. Okay? Is that straight forward. I'm just going to make it instead of having a fully

connected representation. So, in the fully connected case all of these pixels would have contributed to

this one pixel, but I don't want that, because I want to make sure that every output only depends on the

relevant inputs. Okay? So, to ensure that what I wanted is, that it should have dependent on all of

these. Okay? As, of now, what I'm telling you is, that I will only make it dependent on this pixel. and

the previous pixel, that’s what I'm telling you. As of now, Okay? So, that's I have defined what X t

looks like. now, I need to define what Ht minus 1looks like. Okay? So, my definition for H t minus one

is that, it will only depend on the three pixels above it. Is that fine? Again, it could have been a fully

connected connection. But I'm just going to make it depend on eon the three pixels before it. Is that

Okay? But this pixel in turn was dependent on three pixels above it, and this was dependent on these

three pixels and this was dependent on these three pixels. Okay? Now, in turn this pixel would have

taken input from, here Right? is that Okay? So transitively now, this since this pixel the one which I'm

shading right now? Contributes to the central pixel, transitively this pixel also contributes to the

central pixel. Is that fine? The same thing I can argue about all these pixels, which I am shading now,

all of them transitively can't contribute to the pixel of interest. Is that Okay? Again, gets this. Okay?

So, Now, in some way I've made sure that Xi depends on everything from X 1 to X i minus 1. Is that

fine okay? So, that's exactly how these LSTM operations are defined.

Refer Slide Time (32:58)

So, remember in the original LSTM equations, you had this matrix multiplication. Now, we have

replaced all of them by convolution operations, and the convolution operation ensures, that there is

this sparse connectivity where only the relevant pixels, contribute to the next pixel. Is that Okay? So,

we have taken the LSTM equations and just converted them to replace the fully connected operations

to convolution operations. Right?

Refer Slide time (33;28)

So, that's exactly what a pixel RNN. Does it has these it has this deep layer of spatial LSTM's. all

these LSTM's have a unique connection. They only depend on the previous guy, and transitively, then

I ensure, that this particular pixel only depends on the relevant inputs, that it should depend on. Right?

and now, instead of having a normal feed-forward neural network. I have these LSTM neural network.

Because they also take inputs from the previous state. So, that there is are current connection between

these. The only thing is that instead of having a fully connected recurrent connection you have a

convolution driven fully connected conversion driven hidden connection or a recurrent connection.

Right? so that's what pixel RNNs do at a very high level. So, now, you can go back and read the paper

and try to understand it. So, the paper actually has many more details beyond this basic framework.

What I wanted to explain to you is that starting from an input and given this goal, that your output has

conditional probability distributions such, that each value in the output depends only on certain inputs.

How do you ensure that? So, that's the intuition which I have tried to give you. Now, the paper has

several more details they use. Something known as row LSTM something known as diagonal LSTM

then some skipped connections and so on. So, now, with this intuition, if you try to understand the

paper, you should be able to understand it better. So, you can go back and take a look at this. So, I'll

just end here.

