
Lecture - 21
Neural Autoregressive Density Estimator (NADE)
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Today, we will talk about auto regressive models and this is continuing on our journey 
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towards deep generative models, we've already seen a few RBMs and not few too actually RBMs and

various new autoencoders. Today, we look at one more family of deep generative models known as auto

regressive models and in particular, we look at two architectures NADE and NADE, I'll tell you what they

mean, they're not just made up terms and so let's start with the first one which is neural auto regressive

density estimator. Okay? So, let's look at each of these terms. I hope the first term is obvious to everyone

by now, I guess density estimator, what does that mean, probably density good, not physics, Okay? So,

this just means that we want a neural model for estimating probability densities. Okay? And what does

autoregressive mean, of course you don't know Right?? If you knew all these and why am I here. So, I

will we look at that and see what auto regressive means, Right? 
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So, so far, we have seen a few latent variable models fix RBMs and variational autoencoders and these

models make certain independence assumptions by relying on the latent variables. So, for example both in



the case of RBMs and the VAEs we made some assumptions, in the case of RBMs, we said that given the

latent variables, the visible variables are independent of each other. So, once you bring in this latent

variables and the idea is that the number of latent variables is actually much smaller than your total

visible variables, and you get rid of the dependencies between the visible variables by just assuming that

given the latent variables, all of these are independent. So, that largely simplify is your factorization and

reduces the number of parameters in your model and in fact even though it was not so obvious in the case

of variation autoencoders, we made a similar assumption there also, we very smartly said that P of X

given Z, actually comes from a normal distribution whose covariance matrix is identity, that's the same as

saying that given the Z, the X's are independent of each other, Right? hence the Sigma is equal to I. So,

we brought in these latent variable models and they had in our eventual goal which was towards having a

tractable model, of course even then there were issues, it's not that just bringing in the latent variable

model  solved  everything,  despite  having  latent  variables,  we  still  had  to  do  this  expensive  MCMC

sampling,  in the case of RBMs and even in the case of VAEs,  we had to get  rid of this  integral  or

summation or expectation by resolving to this variational  inference rate which tries to maximize the

lower, lower  bound instead of  actually  working with the  original  objective function,  Right?  So,  just

having latent variables is not enough on top of that also, we had to do certain things, 
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now we look at Autoregressive models which do not contain any latent variables. Okay? The name, the

name of course remains the same that we are still given a bunch of variables X, Right? So, this is x 1 to xn,

and in our example this has been explained to x1024, because you have 32 cross 32 images and you want to



learn a Joint Distribution of that and as usual for ease of illustration, we'll just assume that this X belongs

all these X's are binary, Right? So, your X comes from 0 comma 1 raise to n, instead of R raise to n.

Okay? That's easier for us to illustrate it, now AR models actually do something very bold they assume

that there are no independence assumptions, that's a really convoluted way of seeing it. So, they assume

no  independencies.  So,  they  what  they  assume  instead  is  the  natural  factorization  and  that's  not  an

assumption,  they just  break down this probability distribution using the chain rule,  and you saw the

original chain rule had this X1 priority of x1 into x2 given x1 into x3 given x1, x2 and so on. So, in general

one of the factors in this joint, in this factorization is probability of X i given X1 to X minus 1, Right? and

how would you represent that as a graphical model, what are the nodes in your graphical model, x1 to xi,

what are the edges, for Xi,  what are the edges, it's connected to everything from x1 to xi  minus  1 and it

connects to everything that comes after it, Right? a parent of everything that comes after it, and a child of

everything that comes before it, Right? That’s what this figure is trying to illustrate. Okay? So, every node

depends on all its previous nodes and all these subsequent nodes are dependent on this node, that's very

simple a that's very straight forward,, just convert this factorization into a graphical model. Okay? but this

is like really frustrating, Right? we had this entire saga of three weeks where we said that we cannot work

with this joint factorization, because it has an exponential number of parameters and after doing all that

epic saga and back to the basic factorization and seeing that auto regressive model work with that Right?

So, this is really expensive, in fact the total number of parameters that you have in this factorization is

order 2 raise to n, there were some of the factors have a large number of parameters, Right? So, everyone

gets that. So, this have the first factor has one parameter, the second has two, four and soon, Right? So,

it's a exponential number of factors that you get. So, what does I mean, I started with saying that this is

bad, this is bad this is bad, we did a lot of stuff along the way to explicitly avoid this kind of factorization

and now we are back to this. 
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So, how does this make sense? So, this is infeasible, but the way auto regressive models work around this,

is that they use a neural network to parameterize these factors and then learn the parameters of this neutral

network. Again, nothing new, what does this sentence actually say? It is giving you the dash for learning a

joint distribution, the standard recipe, Right? this was the recipe that we discussed that if you want to

learn a joint distribution, you can say that there are certain parameters associated with the distribution, the

parameters in turn can be functions of some other parameters and then, you learn the those parameters

and that's exactly what this sentence is saying in short, Right? So, again that does not really explain, how

we are going to get rid of this exponential number of parameters. So, let us see what this exactly means

and how it allows us to bypass this problem. Okay? 
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So, in terms of neural network, Right? So, for the time being just ignore this part, actually we can remove

this from this slide. So, what do I want, I want a neural network where I have n outputs, Okay? Each of

these outputs predicts one of the conditional probability distributions that I am interested, Okay? There

are n conditional probability distributions in my factorization, I will have a neural network which has n

outputs each of these outputs will predict p of xi, given x1 to xi minus1, Okay? Without telling you anything

else, can you tell me what is the function that you will use for each of these output nodes, Right? So,

remember we used to do this, Right? what's the function for input, it was sigmoid tan it and so on, then

what's the output function then, what's the loss function Right? So, I'm just bringing that back without me

telling  you anything  else,  I'm just  telling  you that  the  job  of  the  neural  network is  to  predict  these

conditional  probability  distributions  and further,  we  are  assuming that  all  these  variables  are  binary,



Okay? So, now can you tell me what is the output function that you use for the output layer, what do you

expect  the first  node to predict a value between 0 and 1,  the second node.  So,  soft max,  we need a

probability  distribution,  Right?  So,  we  should  have  a  soft  match,  why  not?  These  nodes  are  all

independent of each other, these are all separate factors there some need not be one. So, we don't need a

soft max here, what do we need, we need n sigmoid functions, each of these sigmoid functions will

predict a value between 0 to 1 which will tell us what's the probability of x i taking on the value 1, given x1

to xi minus 1. So, is the output layer clear to everyone, is that fine! please raise your hands if it is clear, Okay.

So, you should understand why we don't need a soft max function and why we will have n independent

sigmoid functions. Okay? Fine, now at the input again you are given these x1 to xn. Right? So, this is the

pixels that are given to you and what you want to predict is probability of xi given xi minus 1. Okay? But the

catch is that the nth output should see only inputs from 1 to n minus 1, why is it so?  I am saying that the

nth output or the ith output should only see inputs from 1 to i minus 1, why is it so? Because that's the

given part, Right? the ith output is predicting p of xi, given x1 to xi minus 1. So, given means what was the

input given to me. So, the input was only x1 to xi minus 1. So, when I am predicting this probability, I should

only be looking at the inputs x1 to xi minus 1, does that make sense, in particular see if I give you x i, also then

what's the point of predicting what is p of xi, that I have already seen that what's the, what am I trying to

predict,  does  that  make  sense?  Right?  So,  the  given  part  tells  you what  is  the  input  given  for  this

computation? So,  you should only be looking at  x1 to xi  minus  1.  Okay? Now, if I  were to use a fully

connected neural network that means I start with the input layer, I have some hidden layers and then I go

to the output layer, will that be. Okay? I'm saying if I had a fully connected layer, I start with the input

layer, think of the multi- layer perception that we did, Right? So, we have the input layer, we have a

bunch of hidden layers and then the output layer and everything is fully connected, will that be. Okay?

For the solution, yes or no? Everyone. Right? Yes. So, by definition it's fully connected. So, every guy in

the hidden layer sees all the inputs which in turn means every guy in the next hidden layer has seen all the

inputs and you can argue this up to the output layer, every guy in the output layer has seen all the inputs

and that's exactly the problem that I want to avoid, I don't want every guy in the output to see all the

inputs, I just wanted to see the relevant inputs. Okay?  
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So, that's why a fully connected network does not work. So, this neural auto regressive density estimator

has a simple solution, for this for a three output unit, we compute a hidden representation using only the

relevant inputs. Okay? So, let's look at x3 this is the output unit that. So, I want to first compute a hidden

representation, Okay? I'll have a matrix W. So, think of this W as the fully connected matrix. Okay? But

out of those entire W that entire W, I'm going to only look at the first less than k columns. Okay? And

from the input I'm also going to look at only the first less than k columns. Does that make sense? Okay?

So, that means, what does that mean, my hk only depends on x1 to xk minus 1.So, I have ensured that the

hidden representation which I am computing has only seen a selected number of inputs and in particular

only those inputs which I was allowed to see, because this is a k th output, I should have seen only inputs

up to k minus 1, does this computation make sense to you? Right? it does, I'm just looking at the first k

entries of the input, Okay? Fine. And now we can compute the output. So, I'm interested in the k th output

which actually gives me the priority of xk given x1 to k minus 1 and I'm going to compute it as a function

of hk, which in turn is only a function of x1 to xk minus 1. So, everything closure up to this point, I have not

seen anything that I was not supposed to see and vk and ck are just parameters. So, that doesn't matter,

Right? So, I if I do this kind of a computation. So, what I'm doing in effect is, for every output, I am first

computing a hidden representation which looks only at the relevant inputs, Right? And once I make sure

of  that  whatever  I  do  with  the  hidden  representation  is  going  to  be  all  fine,  because  the  hidden

representation  has  seen  only  the  relevant  inputs,  hence  the  output  computed  using  the  certain

representation will only see the relevant inputs, is that fine with everyone, how many few clear with this?

Please raise your hands, top and high, Okay? Good.  
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So, now let us look at this equation carefully. So, you have hk is equal to first k columns of the W matrix

multiplied by the first k entries of the x vector and then you have this prediction, Okay? How many

parameters does this model have, notice something, there is no suffix associated with w 1b which means,

they are shared across all the outputs but there is a subscript associated with v k  and ck, Okay? and I've

asked you the question what's the number of parameters, I also need to tell you something about the input

and the output. So, we will assume that x belongs to 0, 1 raise to n, that means X is n dimensional Right?

it does not matter whether 0, 1 or what? But it's n dimensional and I will assume that h belongs to R d. So,

it's a d-dimensional vector. Okay? Now, you need to tell me, how many parameters does this model have

to start counting and why am I asking you this question, what will I have to prove to you, that this does

not have exponential number of parameters, I've somehow got rid of exponential number of parameters.

Right? So, how many parameters does this model have, what is the size of W, d cross n, what's the size of

b,  d,  everyone  please,  this  a  second  last  lecture  of  the  course,  I  expect  you to  do  this,  how many

parameters is w are, everyone should answer, everyone n cos d, how many parameters does be have, d,

Okay? So, you have d cross n and d cross 1, Okay? And the same w1b are used for all the outputs. Okay?

how many parameters does the output layer have, what's the size of vk, what's the size of vk, everyone

please, how many of you get this, that it's 1 cos d, please raise your hands up and high. Okay? how many

such v’s do you have,  n. What's the size of ck, oh god I gived up, Okay. It's 1 sorry, yeah! So, what's the

total number of parameters here, n into and into d plus. Okay? So, that's number of parameters that you

have in the output layer, is there any other parameter obvious from the figure, how do you compute h2,



how do you compute h2? You take the first  column of W, the reason I'm asking you this question is

because next I'm going to ask you how do you compute h1, how do you compute h2, is clear to you, how

do you compute h1, does this start h1 remind you of anything else that you have seen before, where have

you seen a such a similar thing, LSTMs and RNNs you had this edge zero state, what did we do with the

edge zero state, we made it our parameter, Right? So, similarly h1 is going to be a parameter here, what's

the size of h1, d. 
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So, what's the total number of parameters that you have, I think I've goofed up here, yeah! So, you can.

So, Okay? Let’s just do it. Right? So, we have n plus 1 into d here. Okay? So, n plus 1 into d in the input

layer, 
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then what was the next thing.
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Okay? So, let's just call it nd plus d and the next one was nd plus n and then another d, Right? So, this is

what you had in the input layer, this is what you had in the output layer and this is your h1, Okay? So, then

in effect, how many parameters do you have, 2 nd plus 2 d plus n Right? So, it's order n. So, do you have

an exponential number of parameters, No. So, how did this happen, we started with a factorization which

is an explicit  factorization and we have been arguing, since the beginning of this section that such a



factorization will  have an exponential  number of parameters.  So, why don't  you have an exponential

number of parameters here, we shared the parameters, Right? That’s one reason I don't have exponential

number of parameters, Okay? So, now let's just do one more thing. Right? Before we move on. So, I just

wanted me make sure that all of you are clear with this computation. So, I had this W less than k into x

less than k plus b, Okay? So, let's actually see, what that means? So, what's the size of this output going to

be this belongs to what Rd. Okay? Fine. So, now when you are doing, say let's just this is x1, x2, x3. Okay?

And then you have this W11, W12, W13. Okay? Now, I said that you just take the first k columns, Right? So,

this would be if k is equal to 2, then you will take the first column and you'll also take the first row from

here, what will this multiplication give you, a scalar, a vector, a tensor? A vector. Right? So, that's exactly

what is happening here but the. Right? Way to implement this is actually the following that you take your

input and you mask it. Okay? Then whatever vector you get which is essentially going to be x1, 0, 0. So,

then you can directly do this matrix vector multiplication and that's the same as this operation, but that's

the more neater way of doing it take your input mask it and then multiply by your weight matrix, how

many of you get this. Okay? So, that's what W less than k into x less than k means. So, just get familiar

with this concept of masking we'll be using it soon again. Okay? Fine. 
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How will you train this network, how will you train this network, second last lecture of the course, you

just, you don't pretend, you just know one algorithm that you can use for training and we don't think as if

you have 100 algorithms on which again choose, Right? there's only one algorithm that you know, what is

that? Back propagation, after all this is a neural network, Right? what else are you going to use to train a



neural network. So, if I  say backpropagation what do I need to define, loss function, what's the loss

function, what are you trying to predict, probability distribution. So, what's the loss function going to be,

cross entropy, sum of cross entropy, third option is cross entropy of sums, what is the loss function going

to be? I don't have the problem with the answer, I have a problem with the confidence associated with the

answer, what's the loss function going to be, still I have a problem with the confidence associated with the

answer, only one contouring there, it's going to be some of the cross entropy, why hesitate? So, let's look

at one of these guys, Okay? Now, this you need to understand, how everything falls in place. So, what is

your  training instance,  it's  x1 to  xn given to  you,  Okay? That  means,  you know the true probability

distribution that you need to predict at x3, suppose x3 is equal to 1 at the input, Okay? What's the you said

cross entropy. So, for cross entropy, you need the true distribution and the predicted distribution all I'm

asking you is what's the true distribution, if x3 is equal to 1, then what's your true distribution, what kind

of a random variable is x3, a binary random variable, if I ask you the distribution of a random value, what

do you need to give me, how many values do you need to give me, 2, probability of it, taking on the value

1, it taking on the value 0, I am telling you that it was one. So, what's the true probability distribution,

zero, one the same as the two labels, Right? we have seen this a million times, is that fine? And what's the

predicted probability distribution; it's what every one of you get here, Right? So, here you're going to

predict some probability and one minus that probability. Right? So, let's say it's 0.7 and 0.3. Now, what's

the loss function going to be cross entropy between P and Q, how many such loss functions will you

have? This is the one associated with this prediction, how many such loss functions do you have? n of

those. So, a total loss function is going to be sum of these n loss functions, is that clear, was it so hard, say

at this point I expect you to come up with these answers, I mean it's like very straightforward and it's, it's

not satisfying, if at this point you need to, you need to answer these questions Okay? So, that's exactly

what's written on this slide. So, the loss function is well defined, we know how to deal with the cross

entropy loss function, we know back propagation, the only catch here is that during back propagation the

gradient should flow only to the, only to the, only to those connections which were active, this is similar

to something that you have seen in, in, louder, someone is saying elasticum’s, something similar to what

you have seen in dropouts, Right? So, in dropouts also you remove some connections and then you just

make sure that the gradients flow through those connections and in practice all while implementing the

way, you will achieve this is, is always define this mask matrix. So, during forward propagation also the

mass would be active and during backward propagation also the mask would be active, is that clear?

Okay. 
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So, just need to make sure that the gradients only flow along these two paths and not to any of these other

guys, Okay? Is that fine? Okay. Now, let's ask a few questions about this model. So, whenever you are

talking about  generative models,  what  are  the  two things that  we have been interested in,  everyone,

abstraction and generation. So let's ask the first question, can this model do abstraction, that is once the

model is strained I have learned W b, all the v case and all the c case and I know I can do that because this

is a neural network, I have defined the loss function, I can do back propagation, once I do that if I give it a

new x, can I ask you to compute a hidden representation, what's the hidden representation of x, in each

forward pass, how many hidden representations does this network compute, in each forward pass, how

many hidden representations does it compute, n. Right? h0 to hn minus 1 or h1 to hn, whichever you want to

look at it. So, given an x, you are computing n hidden representations. Now, I'm asking you give me a

hidden  representation,  which  one  will  give  me  this  is  where  you  have  to  start  bringing  everything

together, Right? So, the idea of hidden representations the first time we looked at it was in the context of

auto encoders, Okay? The idea always behind and hidden representation is that it  should capture the

semantics of the input, Okay? Now, which of these n hidden representations that you have computed

captures the semantics of the input, semantics of the input the way we have semantics is of course very

vague, we have never defined it, but at least in terms of auto encoder, you know what we meant or it

given  that  hidden  representation,  we  could  reconstruct  the  output.  So,  which  of  these  n  hidden

representations is the abstract representation of your input, the last one, the first one, all of them, none of

them?  Last  one,  what  is  the  last  representation  actually  capturing,  what  is  the  job  of  the  last

representation, given  h1 to hn minus  1, reconstruct, Sorry! given x1 to xn minus 1,reconstruct xn, is that good



enough for you, what did the hidden representation in auto encoder do, reconstruct x 1 to xn, each of these

hidden representations that you see here is only capable of constructing one of the inputs is that good

enough. So, these models are not latent variable models by design they are not meant for abstraction,

Right? You can of course come up with arbitrary things that you could take a concatenation of all these

and these are, but that's going to be a very large vector n in 2d or you could take a sum of these are an

average of these and soon but the fact is that these are not latent variable models they do compute some

hidden representation, but by design they are not meant for abstraction. Okay? You could come up with

ways of constructing hidden representations from this h1 to hn, but that's not very natural, in the sense of

how we did it in the case of auto encoders, how we did it in the case of RBMs and how we did it in the

case of VAEs, does that distinction make sense? Everyone raise your hands, if you make sense Okay? So,

that's why these are not latent variable models and they are not designed for abstraction, 
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what's the second question I'm going to ask 
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can we do generation, 
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what does it mean to do generation? No. I just want to generate samples, how will you do generation? So,

you're saying you have an independent binary random variables, you could a sample independently from

them. So, why do you need training and all that compute the probabilities, give me a procedure to sample

from this distribution, I have actually given you an explicit distribution. Right? Given, Okay? Let before I



talk about sampling if I give you an x. Right? So, I had asked you to train this on m-miss digits and attest

time, I give you a new image and I ask you to compute p of x, can you compute it, can you compute p of

x, where x is a vector actually or a matrix, Right? It's an image, can you compute the probability of x

using this model, yes, no, everyone, how? You will compute all the, will compute all the all the n outputs,

these are factors in your joint distribution, you just take the product of them and that gives you the total

probability or the probability of the entire thing, is that fine? How many of you get that. Okay? Okay.

That  was  just  a  separate  question,  now  my  other  question  is  that  how  do  you  sample  from  this

distribution, how do you generate a new image, first question, can you generate the entire image at one

go, yes, no? No. What's the generative process going to be think in terms of graphical models, first find

x1, given x1, find given x1and x2, Okay? Now, tell me how will you do it, not randomly initialize h1 was a

parameter of the model, its trained sample from p, x1 but how do you compute p, x1, h1 is remember x1

only takes h1 as the input and what was h1, a dash of the model, a parameter of the model that means we

have done training. Right? I’m assuming that the training is done. So, what's the first thing I'm going to

do, I'm going to compute the priority of x1 equal to 1, using this formula, is everything here known? v1 is

a parameter, h1 is a parameter, c1 is a parameter. Okay? I have computed this probability. Now, what do I

do, sample from what does that mean, how will you sample, what kind of a distribution is this? Poisson

distribution, richly distribution, beta distribution, normal distribution, everyone? Bernoulli distribution.

How do you sample from a Bernoulli distribution, this will give you a value, Right? say let's value is 0.4

allows this a million times that ask is this another million times, if it's required, how will you sample from

this, you will sample from a uniform distribution, you'll get a value between 0 to 1, if the value is less

than 0.4 you will set it to 1 else to 0. So, now you have x1, generated, you do you have the first pixel

generated, now what will you do, you will set x1 to that value and what will you do next, 

Refer Slide Time: (32:02)



now you can compute h2 using x1, you have a value of x1 when you have sample it once you have x1, you

can compute h2  because x2 only depends on x1 and the parameters of the model which you have already

learned. So, again you will get some value say 0.6 again you will sample from this Bernoulli distribution

and what will you get, you'll get a value of 0 or 1 and that you will put it into x 2, you will continue this

process one random variable at a time or one pixel at a time and generate the whole image or set the

configuration for all the random variables, does that make sense, is everyone clear about how you will

sample  from this  distribution?  Right?  sample  one  value  at  a  time,  obviously  this  is  very  efficient,

inefficient? Inefficient and is going to be very slow again, nothing wrong with it all these models come

with their own pros and cons. So, this is one disadvantage of this model, the sampling is going to be very

very slow, you'll have to do a lot of computations for generating one sample from this distribution, Okay?

what's the advantage? You are working with an explicit  or exact factorization you're not making any

independence assumptions, Okay? Fine. 
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Now, notice that this model requires many, many computations, Right? Because every time you have to

first compute a hidden representation and then compute this yk. Right? Okay? But the good thing is that if

I want to compute this for the k plus 1th unit, I can just use whatever I'd done for the k th unit and just add

one simple thing to it. So, it should be xk plus 1. Right? does that make sense? Beside these three columns

here and these three rows here. So, the first guy only depends on this product, the second guy is actually a

sum of this plus, this second product. Right? So, once I have computed the first guy, I can just reuse that

computation.  Right? This is, this follows from basic linear algebra or matrix multiplication, everyone

gets that. Right? How many of you don't get this, how many of you get this? So, you can just go back and

look at  it.  So,  you can do some of these computations efficiently it  does not  take care of the entire

problem, but at least something can be done efficiently. Okay? Okay. 
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So, the things that you need to remember about NADE, are that it uses an explicit factorization for the

joint probability distribution, each node in the output layer corresponds to one factor, in this explicit

representation, it reduces the number of parameters which would otherwise have been exponential by

sharing the parameters, wnb. Right? you have shared the parameters in the neural network, there's it is not

designed for abstraction it does compute some hidden representations, but it's not clear whether they are

the hidden representations that you really want the Guru's, you could do something on top of that and try

to get a hidden representation, but by design it's not meant for abstraction, and generation using the model

is going to be very slow, because it's going to generate one pixel at a time and it's possible to speed up this

computation by using the previously done computation, that's what I showed on the last slide. So, that's in

a nutshell noodle autoregressive density estimator, what's auto regressive noodle and density estimator is

fine, Autoregressive it's using the previous prediction to predict the next prediction, Right? Regression is

fine, auto comes from the previous query is that fine. Okay?


