
Lecture 20.2
Variational Autoencoders: The Neural Network Perspective



Okay.
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So, as I was saying that, there are two different perspectives for Variational Autoencoders. One is the
neural network perspective, we just view it as a Neural Network and just list on the operations, do the
standard thing. What do we do with neural networks? We write down what the model equations are. How
do you get  the  output  as  a  function of  the  input?  What's  your  objective function? And what’s your
learning algorithm? If you do that, it's just the neural network perspective. The other perspective of course
is the graphical model perspective; you think this, think of these things in terms of random variables,
dependencies between random variables and then certain things on top of that. Right? So, we are going to
look at both these perspectives. So, we'll start with the neural network perspective first and then go on to
the graphical model perspective. Okay. 
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So, once again, our setup is that, they are given some images. So, they are given some N images and we
can think of images, as a collection of random variables, each image has 1, 0 to 4 pixels. So, our X is of
dimension n in general or in this case of images that we have been taking 1 0 to 4. Right? So, that’s your
training data. And for each, X or for each of these images, the dimensions correspond to the pixels in the
image. Now, what we are interested in, is in learning an abstraction that it given as X, well interested in
learning a hidden representation z. So, here what I’ve shown you is actually a two-dimensional hidden
representation? So, assume you just have z1 and z2 as two dimensions and what I have done is, for all the
inputs that I had, in my training data. Right? For all the images that I had in my training data, I just
computed this two-dimensional representation for them and just plotted them. And this are probably all
the images of beaches, these are all the images of mountains; say these are images of buildings and so on.
Right? So, you can see that,  things which are similar, they’ll  have a very similar or clustered hidden
representation and they would all  lie,  very close to each other. Right? So,  that’s what an abstraction
means.  Right?  You  just  take  this,  high  dimensional  image  and  then  try  to  learn  a  low  dimension
representation for that and in that representation space, things which are similar. But, were not so, obvious
in the high dimensional space, come together in the low dimensional space. Right? That’s the whole point
of abstraction and the other thing that we are interested in doing is, generation. That if I give you, a
hidden representation, you should be able to generate data back from it. Right? So, suppose I'd learn
hidden representations for faces. Now if I give you a hidden representation, you should be able to give me
faces back. Okay? So, these are the two things that we are interested in and in probabilistic terms, what
we  want  is,  we  want  a  distribution  over  the  latent  variables,  given  the  observed  variables  and  a
distribution over the observed variables, given the latent variables. Right? This is the drawback or the
limitation that we had in Autoencoder and this is what we want to, fix in Variational Autoencoders. Okay?
Fine. 
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So, you know what's a big deal? Right? I just told you that,  I'm going to give you a neural network
perspective. But, you have already seen a neural network, which can do this. Right? You have already
seen RBMs, which does exactly the same thing, it's a neural network, it's a stochastic neutral Network. It
gives you both the distributions P of Z given X and P of X given Z. So what? Why I mean, this model just
ends here. Right? I’ve given you a neural network which can, are there to your wish list. So, what is?
Why do you want to do something different? So, the answer actually, comes from literature and graphical
models in general. So, the idea is that, all algorithms or models that you see, in all graphical models are
generating models that you see, they always have, a lot of assumptions. These assumptions are either in
the form of independencies or they are in the form of approximations that you do, while making certain
computations or they are expensive, because you need to do something very expensive, like a Markov
chain and so on. Right? So, I'll just list on, some characteristics I'll not call them limitations, because
almost all the models that we'll see, starting with various not encoders, to auto regressive models and later
on Ganz, they all have their own set of limitations. So, I not call them, ‘Limitations’ I'll just highlight
some characteristics of RBMs and then later on we'll try to compare them, to very stern auto-encoders,
which I’ll probably do in the last lecture, once I finish all the deep generative models that I want to cover.
So, here are the characteristics, first thing that we do is this, was a Markov network, where we had made,
certain  structural  assumptions,  what  do  I  mean  by  that?  What  were  the  assumptions  structural
assumptions that we had made? The hidden variables do not depend on each other, the visible variables
do not depend on each other and the only, so we had assumed this bipartite graph like water, it is visible in
the figure. Right? So, that's a,  structural assumption that we mean, it’s not clear, why we made that
assumption or what should that be the necessary thing or could I have been different or whatever it. Let’s
one assumption that we made, the other was in terms of computational. Right? So, when we are doing
RBMs training, using Gibbs sampling, remember we were doing stochastic gradient descent and at every,
step of stochastic gradient descent, what did we have to do? We had to run this Markov chain and you
always got away by saying that, just run the Markov chain for a large number of steps. In practice that
large number of steps, can actually be very, very large, in theory of course it is as n tends to infinity.
Right? So, all those guarantees hold, only asymptotically that means only if you run the Gibbs change for



an infinite number of time steps. Right? But, in practice also, you need to learn it for, a large number of
steps. Right? And that leads to some computational limitations. Okay? The third was, approximation and
this is what we had done when we were doing constructive divergence? Where we had done this nasty
approximation that this, entire summation, which should have actually contained to raise to n terms, we
just  approximated  by  a  point  estimate  of  one  single  term,  you  remember  that,  hidden  contrastive
divergence, we just took one negative sample and approximated the second summation by, that sound.
Right? So, these are some of the things that we did, in RBMs, you might do, a similar set or a different set
of assumptions and approximations in the case of VS. Right? The point is there's nothing wrong, with any
of these I'm not saying that, this is why RBMs are bad, it says that we need to be aware of these and such
or similar, limitations or characteristics we’ll see for all the, different deeps  generative models that we are
going to talk about. Right? So, variation auto-encoders might have something different, since it’s good to
have  these  multiple  flavors,  of  these  models,  each  one  comes  with  their  own  set  of  properties  and
whatever suits you best for your application, you could rely that, that’s why we're doing multiple of these.
So,  starting  with  RBMs.  And  now,  looking  at  various  nutrients.  Okay?  So,  that’s  why  the  noodle
perspective does not end here, this is just one possible neural network based solution for learning this
joint distribution. But, there are others possible and we are going to look at those also. 
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So, with that background let's return to our goals. So, that first goal was: to learn this distribution key of Z
given X, the second goal was: to learn the distribution X given Z, VAEs, you use a neural network based
encoder for goal 1 and a neural network based decoder for goal two. Now, based on this initial recipe that
I gave you, does do these two statements make sense, what do I mean by these two statements? That are



you use a neural network based encoder to learn Q of Z given X and a neural network based decoder to
learn P of K X given Z, what does that mean? What am I going to do? No, just go back to the recipe that I
gave you at the beginning of the lecture. I’m going to represent P of x given Z, what are the parameters of
this distribution? I don't know, because I’ve not told you which family it belongs to that, I could assume
it's a Gaussian, I could be assume it's a Bernoulli, I could assume multinomial, whatever I want? But,
what this high-level recipe tells me is that? I could choose any family that family would come with its
own set of parameters, in fact let me give you the family, the family is going to be Gaussian, because for
VAEs, everything that we look at, will make Gaussian assumptions, at all these distributions that we care
about, follow a Gaussian distribution. Now, if I'm going to make that assumption, what are the parameters
of a Gaussian distribution? Mu and Sigma. Now, what do I mean that I'm going to learn this using a
neural network? I’m going to express, mu and Sigma, as a neural network function, which is this complex
function and it has some parameters theta and so, my objective function is going to be with respect to
theta. Right? Do you get that? So, can you relate this to the original recipe that we had seen, of course the
details are still missing. But, I want you to keep the high-level picture in mind. How many of you get this
please raise your hands? Okay? Good so, now we look at the encoder first and as I said. Right? So, it will
take me almost the entire 35 slides, to get to the full story, I will deliberately skip some, you not probably
realize it. But, I will deliberately not give you everything, when I'm talking about the neural network
perspective, things will become clear only when I talk about the graphical model perspective. Right? So,
if  you feel  there are some things missing,  just  wait  till  the end of the lecture and see if,  everything
becomes clear. Right? But, as of now, I am NOT Thole, much so, they shouldn't be anything missing.
Right? 
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So, let's go ahead with that. So, again the same question, what do we mean when you want to when we
say we want to learn a distribution? We mean that, you want to learn the parameters of the distribution.
Right? But, what are the parameters of Q z, given X, V I said I want to learn this distribution that’s very,
clear and when I told you that, you also told me rightly that, what I’m actually saying is, I want to learn
the parameters of this distribution. But, what are the parameters of the distribution? You know, that's the
parameters,  of  the  parameters.  Right?  The weights  of  the  neural  network,  are  the  parameters  of  the
parameters of the distribution. But, what are the parameters of the distribution? So, I have not told you
that. Right? So, now I’m going to introduce that, it depends on our modeling assumption. Right? What
kind of family do we assume for P of Z given X, in variation auto-encoders, we are not going to deal with
arbitrary families. Right? So, we are going to assume, a per ton certain family for the distribution and then
try to learn the parameters of that distribution. Okay? Do you get the difference? That one is I tell you this
is  a joint  distribution,  I  don’t  care,  what  kind of family it  belongs to,  it  could just  be  any arbitrary
distribution. Right? So, it could be a distribution of the following form. Right? So, if this, is my X 1
dimensional, then it could be a distribution of this form. Right? But, what we are going to assume is that?
The latent variables, actually come from a normal distribution. Right? And we are also going to assume
that the normal distribution is 0 comma I. Okay? So, now what's the job of the encoder? It has to take as
input an X and what should it output? What should it output? The parameters of this normal distribution.
Right? Which is mu and Sigma? Okay? I just leave it at that and I will come back to it again. Okay? So,
now the encoded part is clear, because I have assumed: that the distribution Q, is actually going to be a
normal distribution, which has parameters mu and Sigma. So, this mu and Sigma, I'm going to express it
as, f of theta, of X. Right? Where f is, what is f? On  neural network. Right? And theta are the parameters
of the neural network, it takes as input X and gives me the distribution over Z or rather it gives me the
parameters. Right? Now, the advantage of working with the family of distribution is that, the only thing I
need to give you is the parameters of the distribution, once I give that, you can sample things from that
distribution. Right? So, once I tell you that this is what my normal distribution looks like and this almost
looks like a standard. But, if it was not a standard distribution, if it was something like this, once I tell you
what mu and Sigma is, now you can generate samples from this. Right? So, you can generate Z, from this
distribution, if I tell you that, this is what? Z given X looks like. Do you get that? Okay? So, that's the
advantage of working with a family, rather than working with arbitrary distributions. Okay? Right?
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 Now, what about the decoder? So, what is the decoder going to do? So, this is what the encoder has done.
Right? It has taken an X, it has mapped this through a sufficiently complex function of parameters theta
and it has now, tried to produced mu and Sigma. Okay? What is mu and Sigma? Together parameters of
the distribution. Now, what is the input to the decoder? Is it, mu and Sigma, what does the decoder do? It
takes  a  hidden  representation  and  tries  to  reconstruct  the  input.  Okay?  But,  now  there  is  some
misunderstanding between the encoder  and a decoder. Right?  And an Autoencoder, they had perfect
understanding, the encoder produces the hidden representation, the decoder takes the hen representations
and tries to reconstruct  something.  But,  now the encoder has in apartheid,  what  it  is  saying is  I  not
producer hidden representation, I'm just going to produce mu and Sigma. But, what was the decoder do
with mu and Sigma? It cannot work with me when Sigma, it needs to work with us Z. So, what will the
decoder do now? So, what we have to do? Sample from this distribution. So, the encoder has told you
what the MU and Sigma is,  once you know, what the MU and Sigma is? You can sample from that
distribution, everyone gets that, please our hands if you get that. Okay? Now, when I say sample, the
obvious statement is I'm going to make is it’s not deterministic anymore. Right? So, if I'm going to say it
as many times it takes me, to see it, but, this on the this is your z axis and this is the distribution which
I've assumed, in the case of, very in the case of normal auto-encoders, you could produce only one of
these values. Right? You just had a fixed Z. Now, I have given you this mu and Sigma and I could sample
any  of  these  Z’s  of  course  the  probability  of  sampling  would  be  proportional,  to  the  probability
distribution. Right? So, the values which are closer to the mean, are going to be more likely. Okay? But,
it’s still going to be, they're still going to give me some randomness distribution. Okay? So,  I'm going to
sample from this distribution. Okay? Now, once I have sampled from it, the job of the decoder, is to
predict a distribution over X's.  So, now I have given you Z as the input and now, I am interested in
learning a probability distribution over X's. Okay? That's what the decoder is supposed to do, once again
we’ll assume a certain form for this distribution, because by now, it should be obvious that, you can't
really work with arbitrary distributions or rather the other thing is obvious that, if you work with the
family of distributions, life becomes much more easier. Right? So, we are going to, work with images, say



for example and you could think of images as28 cos 28 inputs. So, they belong to this R raised, to 784
space. So, what would be a suitable family for such a distribution of real numbers. Again I could assume
Gaussian, there could be many other families. But, I’m going to stick to Gaussian again. Right? So, again
I'm, going to assume that, it's a Gaussian distribution and further I’m going to assume unit variance, what
does that mean? Can you relate it to the assumption that been made for RBMs, how many forget that?
Please raise your hands if you get that? What does it mean that the covariance matrix is identity or unit
variance, all the off-diagonal elements are 0 that means all, the random variables I J, where I is not equal
to J R independent of each other, given what does, what is the distribution that we are talking about? X
given Z.  So,  this  is same as saying that,  given the latent  variables, we are assuming that  the visible
variables are independent of each other, this is very similar to the assumption that we had made in RBMs,
with a  different  way of  arriving at  the  same assumption.  Right?  Do you get  that?  Please make that
connection, again is fine is that. Okay.
 So, now you assumed it’s a Gaussian and further we have made life even more simple that we have
assumed it’s a unit variance. So, what do we need to predict now? Only the mean of the distribution.
Right? So, we just need to produce the mean of the distribution and what are we going to do again,
following a recipe? What's the input to the decoder? Z  we are going to predict mu as a, function of come
on, Z parameterize by, some parameters and we'll call it, ‘Phi’. Okay? So, the encoder parameters are
theta and the decoder parameters are Phi and although, it looks different we have actually followed the
same recipe for the encoder and the decoder. Right? We assumed a form for the first distribution, express
the parameters of that distribution using a neural network with parameters theta, we assumed a form for
the second distribution, express the parameters of that distribution using a neural network with parameters
Phi and now, our final objective function whatever it is, I have not defined it yet, is going to be with
respect to, MU and Sigma. Everyone, everyone, everyone theta in Phi. Right? Is going to be with respect
to theta in Phi, is that clear? Anyone who's, not cleared with this? Please either hands, if it this is clear.
Okay? See a very small,  set of  students.  So,  people who did not  raise hands please ask me specific
questions, four comma two, yeah! You know, the one, the one before you. Okay? So, you don’t want to
raise your hand, even the lazy ones, please raise your hands again if you have understood this, everyone
please raise your hands. Okay? Now it's fine, you guys are just lazy you know, how much does it take to
raise your hands. Okay? So, I assume this is clear, we have followed the same recipe, it's the same as what
I started the lecture with. Right? Okay? Now, I very conveniently told you that, the optimization is with
respect to theta and Phi. But, I am not even giving you the objective function. Right? So, we need to first
figure out the objective function and then ask, those nasty questions that we had in RBMs, whether the
objective function is tractable or not, because we came up with a nice objective function in the case of
RBMs. But, what was the problem there? Computing that required of an exponential computation. Right?
Because you had this expectation, over to raise to, n plus M, terms like the summation was over to raise to
n plus M terms. Okay?
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 So, what would be the objective function of the decoder?  What should we maximize? What is the
decoder triangular was the decoder time we'll learn a probability distribution, P of X given Z. What did I
give you as the super input, X.  So, what should the decoder better do, maximize the remember the recipe,
maximize  the  log  likelihood of  the,  input  that  I  gave  you.  Right?  So,  what's  the  objective  function
maximize, log of P of X. Right?  For all the N training examples that, everyone agrees with that. Okay?
Now it should, now for this one given example, it should just maximize P of X I and now just a shorthand
notation. Right? So, when I say P of X, I it means P of X taking on the value X Y. Right? Okay? Now this
of course can be written as, the following integral which is very easy to, compute how many integrals are
there actually. So, it's actually when I say integral with respect to Z, Z itself is a vector. Right? So, this is
integral with Z 1, Z 2, Z 3, up to Z M, read the number of dimensions that Z it has. Right? So, this is
again, a very nasty integral and this is actually again the same kind of expectation that we were dealing,
with in the case of RPM. Right? Not the same expectation but the same kind of expectation, where you
have this term inside and this integral is nothing, but the expectation of that term, with respect to. Okay?
So, that's the problem that we have you again are left with this, was in wrong class. Okay? And as usual,
we take the log for numerical statement. Right? So, we have again comeback to the same, kind of story
that we want to maximize the log likelihood, but it's very hard to compute, and so on. Right? But I'm just
going to keep it at that for now and we'll come back to this question, I just gave you the intuition that is
going to be hard, but I'm just going to write it, as it is that this was, my objective function or rather this,
was my objective function, with respect to one training sample.
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 And if I want to consider all the training samples in my data, it's just going to be the sum overall the
training samples. Right? Okay? And is that all, what is the other thing that, we had remember we wanted
to learn two distributions, does this objective function capture both, the distributions, it only captures P of
X given Z. Right? What about the other guy, do you get the question. Right? All I'm asking you to do is,
maximize this quantity, but this is just the circle quantity, which is just P of X I given Z that was one of
the two distributions  that  I  was worried about,  the  other  distribution,  was Q of  Z given,  X is  there
anything in the objective function which takes care of Q, what is the constraint that I wanted on Q ?What
did I want cute be, what did I start off with, I assume that Z is, Gaussian with, zero mean and unit really
based, on that can you give me a constraint. So, that I can add it to the objective function, the first term is
clear is just the log likelihood of the data, written in that fancy expectation form. Okay? But it's just P of
X that’s all it is. Okay? The second term has to do something with Q I, want Q to be as close to a, normal
distribution, standard normal distribution, how can I convert this English sentence into a equation? I want
to but we don't like to, do square errors when we are dealing with probability distributions, I have a
distribution Q; I want it to be as close to a normal distribution. So, I'm talking about the distance between
two distributions. So, what should I try to minimize, the KL divergence between the two distribution
.Right? So, now what I'm going to do is, to take care of the other guy in that I care about which is Q, I'm
going to add this constraint that and I'm just so, I was talking about maximizing. So, that’s the same as
minimizing the negative of the log likelihood. Right? And minimizing the KL divergence, between the
two distributions. Right? Where I have assumed that the second guy, P of Z is a normal distribution, does
this story make sense. Okay? So we have seen the entire neural network, you've seen what the encoder is
going to compute, we have seen what the decoder is going to compute, now we have come up with an



objective function, which has two terms, the first term takes care of the objective of the decoder, which is
to maximize the log likelihood of the data, it better construct samples, which look like your data. And the
second term tries to take care of the other intention which we had, is learn the distribution over the Z, but
try to make it as close to the normal distribution, is it fine .Okay? Now of course the question comes,
whether this loss function, is differentiable is it tractable, can I easily optimize it, those questions I am not
touching at this point, we'll come back. Okay? So, 
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and so, the second term actually, let’s focus on the second term again. So, let’s assume this is an objective
function and we are not worried about computational aspects, as of now, whether I can compute these
terms or not I am not worried about, even I though that know that there's a nasty integral sitting over here.
Okay? Now the second term actually acts as a regularizer. So, remember now this loss function looks,
eerily similar to, remember this, from way back five years back or ten years back or maybe a two months
back,  remember  this  form that  this  is  the  loss  function  over  the  training  data.  And  you  add  some
regularizer, on top of that. So, now can you think of these two terms, as the first term, which corresponds
to the likelihood of the training data. And the second term, actually corresponds to some called sign some
kind of a regularize. Right? So, what it does it does is that ensures that the encoder does not cheat, by
mapping every X that I feed to it, to some unique Z. Okay? 



So, I have some X's, we actually come from some distribution, it may be normal it may be something
else, but it's some distribution. Right? The X's because these are all  images of Beaches these are all
images of mountains. So, it might be a multi modal distribution. One mode corresponding to beaches and
other mode corresponding to mountains and so on. But there's still some distribution, now if I don't add
any constraint, what it could do is, what the encoder could do is in the z space, it could just not each of
these guys to a unique guy. Right? And then the decoder now it's easier for the decoder, it’s just a lookup
that whenever, I see this person I just need to reconstruct this guy. Right? So, it could do this kind of a
cheating, where it does not really try to capture, any latent representations in the data, it does not really
try to make sure all the mountains are close together or all the oceans, I flows together. But it just plies to
do some mapping and then recovers from there, but now if I put a constraint on that, that these Z's also
need to come from a normal distribution, then it acts as a regular I it does not allow it to you learn these
unique mappings. So, these mappings, you could think of as zero variance mapping Z, each of the Z has a
very unique identity, given the X. So, that's the same as saying that there is no variance in the Z, you give
me an X I'll just give you a fixed Z. Okay? So, this regular is this second term acts as a regularizer. 
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And it ensures that you don't learn these unique mapping. And the other thing that it ensures is that, I am
learning a distribution over Z. Okay? And now if in the case of an autoencoder, I was given a single Z and
the job of the decoder was to reconstruct from there, but now since I am sampling from this distribution, I
could even sample a noisy Z, which comes from this distribution. And the decoder now has to be robust to
this noise, even if I give it a Z, which comes from this distribution, it's noisy it should still be able to,
reconstruct the input. Okay? 



Refer slide time :( 27:48)

So, that's how you should view these two terms that are there in the objective function, but now this
critical question. Right? Which is there on the last bullet. Okay? I'll do it so. why do we choose a normal
distribution? So, what we a reassuming is that these latent variables, actually follow a normal distribution.
Why a normal distribution? And what's the first thing that comes to your mind like it’s, off all the possible
distributions, I have first restricted the family, I have said only Gaussian distributions. Within Gaussian
distributions,  of  all  the  means  and  variances  as  possible,  I  just  said  that  this  is  a  standard  normal
distribution, doesn't that look too restrictive. 
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Isn’t it a very strong assumption that Z belongs to a normal distribution.  And since the figure is only
already there, the top figure is actually trying to show you data which comes from a normal distribution.
So, you can think of it as a bell from the top view. So, you're looking at the area under the bell. Right? So,
this is all the things are there's high density, under the bell or the circle under the bell. So, why did we
assume something like that  what  if  these eggs were actually distributed like what  I’ve shown in the
second figure, no but we are not using that. Right? What we are doing is we are just assuming that Z's are,
come from a normal distribution. But what if Z comes from such a distribution, the second figure and
that’s where you need to connect everything to a neural network, which is the theorem that he's referring
to  so,  again  he  related  to  that,  I  guess  I  will  try  to  complete  that  story.  Right?  So,  so  in  the  two
dimensional case. Right? Why should it be a normal distribution like the figure one, it  could be any
arbitrary distribution like the figure two, but a key insight here, comes from the following observation
that and this is this is nothing to do with neural networks, there is just normal probability and statistics
that you can start with a set of D variables, which are distributed normally. Right? In our toy example D is
equal to two. So, I could start with a variable, which is distributed two variables, which are distributed
normally. And from this I could map these variables, through a sufficiently complex function and create
any arbitrary distribution. What does that mean? So, I've drawn Z, from a normal distribution. So, that
means I'm going to get Z's which come from here. Now what I know is that, I could take such as it and
you have to just take my word on this and maybe go back and read some of your probability and statistics
notes. But just for now just take my word for that and I'll  actually explain, it in the case of this toy
example, you could take a z drawn from here. Right? And pass it through a reasonably complex function.
So,  that  you get  start  getting values,  which  look like  as  if  they had  come from this  other  arbitrary
distribution that you care about. Okay? So, let me give you an example, in this particular case. Right?
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 For example,  this complex function that I am talking about,  is  this function.  So, try this,  you draw
samples, from a normal distribution, map it to this function and then plot the values, you will get back the
circle that you see in the second distribution. So, what I'm asking you is go back and draw say around
thousand10,000 samples from a normal distribution, compute the following function, for that variable that
sample, which you have drawn and plot it and you will see that you'll get this second thing. So, what I
have done is I have taken as Z, I have passed it through a sufficiently complex function and then I know
that I can go to any arbitrary, distribution that I want. Now what is a sufficiently complex function that
you know of, you relative, hence decoder is a. So, what does that mean can you tie these things together, I
could make this assumption that it's a normally distributed latent variable, if it is not the case, then the
initial layers of the decoder could, learn this complex mapping. So, that I get to whatever distribution for
Z, which is actually the real distribution for Z, such that when I now compute X given Zit will maximize
the probability that, I care about how many forget this statement? Please raise your hands Okay? Good.
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 So, that's exactly what we do. Right? So, if you can pass these Z's, drawn from a normal distribution,
through a sufficiently complex function and that function could have its own parameters, which are Phi
and  the  function  that  I’m  integrating  a  neural  network  and  we  know  based  on  the  new  universal
approximation theorem that a neural network under certain conditions of course, can learn these arbitrary
functions, of the input your input is Z, which is normally distributed, the actual distribution that you care
about is some complex function of this normal distribution. But a neural network the initial layers could
learn this and then finally when you get, the P of X given Z, it would have come from a Z, which was the
actual latent distribution and not the initial normal distribution that you had started with. Right? Does that
make sense. Okay? So, what it means is that if the decoder really needs to learn its parameters Phi, such
that  it  transforms the  Z from the  normal  distribution  to  an arbitrary distribution.  And only  then  the
objective function would be maximized, then the decoder will do that. Okay? 
The decoder can’t do that, because its job is to maximize the objective function and to maximize the log
likelihood if you, need to learn this transformation for Z, the initial layers of the decoder can't do that.
Okay? That's why it's fine, even if we start with a normal distribution. Is everyone clear about this? Please
raise your hands if you are. Okay, good. So, that’s where we'll end the neural network, perspective of
variation autoencoders and I'm ending, on this sad note, that I haven't actually told you, whether this loss
function is tractable, if it is tractable, how are we going to deal with it. I am not really told you about that.
Okay? So, we will come back to that later on, but for now, this loss function makes perfect sense, from
the new relative perspective, it’s very similar to everything that we have done before, that you want to
maximize the log, likelihood and that’s just this loss function just follows from that. And the additional
constraint was that, you want the latent variable distribution, to be close to the normal distribution. Okay?
So, that's  where we end the neural  network perspective and now we will  go to the graphical  model
perspective.
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