
Lecture 20.1
 Revisiting Autoencoders

Okay. Hello everyone and today we'll be talking about, Variational Autoencoders.
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 So, first let me start with a, Okay first the acknowledgment. So, a lot of material that I'm going to talk
about today, is based on these two tutorials and blogs a, lot of ideas from here. And the disclaimer which I
want to begin with is that, so, this is a slightly tricky topic, because it's like a marriage between, neural
networks  and  graphical  models  and  there  are  multiple  perspectives  from,  which  you  can  approach
variation autoencoders or try to understand them. So, you’ll have to be a bit patient and the entire picture
would become clear only by, the last slide or last but few slides. Right? So,  just be patient, I'm sure, by
the end you'll understand everything, but we’ll go through a lot of intermediate steps, where I'll just leave
the story, at an unfinished point and then come back to it later and so. Alright? 
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So, before we get into variational autoencoders, just are minder that over the past few weeks. We have
been looking at generative models, where the idea is that, you're given a random variable X, where X



typically belongs to RN. So, X is equal to X 1, X 2, up to, X n. Right? And we are given a lot of training
data, containing instances of X. Right? So, you have some n training samples given to you and what we
are interested in is learning the Joint Distribution of X. Right?  And what that means is that,  for all
assignments to, X, we are interested in learning this probability. And the way we go about it, is this now
the standard recipe for a generative model and I will try to relate it to what we had done, for RBMs and
we'll do a similar recipe in the case of variation Autoencoders, also. Right? So, what we do is, that for all
the training data that is given to you, all the n training samples that, we had we want to maximize, this
quantity. And this makes sense, because I have told you that this is what the data looks like here, are some
instances  for  this  data.  So,  if  I  am  assigning  probabilities,  to  these  instances  better  assign  high
probabilities, to them. Right?  I better maximize the probability, to the instances that I've already seen in
the training data that makes sense. Now the question is, what is this optimization problem with respect to
or what are the parameters of this objective function or this optimization problem. Right? So, that's the
question that we need to look at. So, we looked at the similar formulae formulation in the case of RBMS,
where what were the parameters of this objective function? This gives me even more incentive to release
the RPM assignment, are you guys know edge state. Right? What would we do to p what did we express
it as? I remember the energy function. Right? So, we’re expected, express it as an energy function and
what were the parameters of this energy function? W B and C and of course the function also takes in X I.
Right? Because you want to compute the probability, of X taking on the value, of X I. So, you better take
X is the input. Right? So, these we had what we had done is there is known as parameter zing the Joint
Distribution, using the certain parameters and the parameters were WBC and then our optimization, was
with respect to these parameters. Right? Is it clear? So, that's the standard recipe that is often used that
you  want  you’re  interested  in  a  Joint  Distribution,  you  want  to  learn  the  parameters  of  the  Joint
Distribution. So, you come up with a parametric form for it and this is the parametric form, the energy
function, which had these parameters WBC that we use for RBMS. And now the optimization problem is
maximizing, the log likelihood of the data, this is the data. And parameters of the objective function our,
WBC is it fine. Okay? Now let's look at a more simple case. Right? That's suppose, again I'll take the
same case that I want to maximize, the log likelihood of the data that is given to me and now what I'm
going to assume is that this data, actually comes from a Gaussian distribution, multivariate Gaussian
distribution and I'm also going to assume that the covariance matrix is identity that means I don't really
need  to  learn  anything  in  the  covariance  matrix.  Now  for  a  Gaussian  distribution,  what  are  the
parameters? Mu and Sigma, of which I have taken Sigma, off the plate. Right?  I have said that Sigma is
I've just assumed that it's I, now can you tell me, what will this object? What this what are the parameters
of this objective function? What do I need to find, such that the priorities are maximized for the given
data, mu. Right? Not Sigma, because I have just simplified it by taking Sigma off the grade. Right? Now
that's  one way of  approaching  this  problem,  the  another  way of  approaching this  problem which  is
something similar to what we did in the case of RBM says. I say that don't take MU as a parameter,
assume that mu itself is some function, of your input. Okay? So, it is say theta 1 X 1, plus theta 2 X 2,
plus. So, on in general I can just write it as its some function of your input, with the parameters theta.
Right?
 So, express mu as a parametric, form itself, but we introduced some parameters and we also have the
random variables M. So, that because we are interested in computing a particular assignment. So, you
better have the random variables, in the equation, does that make sense. Okay? Now if I do this, what
should I optimize with respect to, theta. Right? So, now my optimization problem becomes that instead of
MU, I have expressed mu itself as a function of theta. And now I want to find these details. Okay? And in



particular this function can be as complex as you want it can have as many parameters that you want. So,
do you know of any such complex functions, neural networks. Right? So, this is one recipe that we are
going to  look at  today. That  you are  interested in  learning a  Joint  Distribution,  you assume certain
parametric form for that distribution. Right? Or rather you assume certain family for that distribution that
it  comes  from  a  normal  distribution,  it  comes  from  a  Bernoulli  distribution,  it’s  not  any  arbitrary
distribution, but you see it belongs to a certain family. And we are mainly going to focus on the normal
distribution  family.  And  as  I  said  the  normal  distribution,  has  parameters  mu  and  Sigma.  So,  the
optimization problem should be with respect to MU and Sigma. But you are not going to do that we are
going to express mu and Sigma as a complex function of some other parameters and then try to learn
those parameters. Right? So, that's a very, very high-level story or recipe behind what we are going to do
today. Okay? Is everyone clear with this, you get this indirect way of learning parameters of probability
distribution. Okay? The distribution has parameters, the parameters are expressed as a function of some
other parameters.  And then you learn those parameters.  Okay? And this is  very commonly done, for
learning  generative  models  are  learning  the  parameters  of  a  Joint  Distribution.  Okay?  So,  with  that
background, let's so, give keep this overarching story in mind whenever we are talking about, anything on
the slides that I have. Right? So, this is the background story and we'll be trying to fill, in points in this,
story. Right? Gaps in the story. Okay? 
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So, before we start with variational autoencoders, let's start by revisiting autoencoders. Right? So, what
does an autoencoder do? It  takes an input  X, it  maps it  to a hidden representation and then tries to
reconstruct, the input from the hidden representation. Right? So, you have an encoder, which does this it
takes the X and maps it to a hidden representation and then you have a decoder, which tries to reconstruct
the input from this hidden representation. And this is a simple feed-forward neural network. What’s the
training algorithm back propagation? What's the objective function squared error loss. Right? So, this is
what we use ? Is the squared error loss. So, you have M training points and the data is n dimensional, for
all  the trained training points for every dimension, you want to minimize the difference, between the
predicted value and the true value. Have done we have done this tons of time the coast. Right? M is the
number of training examples and n is the dimension of the data that was given. Okay? This is what we
have  done  many,  many  times,  in  different  applications  and  in  particularly  in  the  context  of  or
autoencoders. 
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Now what’s the fun in this? I gave you an X, you gave me an X ,tilde , what's so, great about it I gave you
some input, is just so, you can circuit the input and give it back to me. What's so great about it? What did
we do in the process? And I want you to use some terminology that we are introduced in the case of
RBMs, there were two things that we were doing for generative models, one starts with a, the other starts
with G, abstraction and generation. Okay? Okay? So, now tell me what’s the fun in this? What have we
done in the process?  I have done abstraction. Right? So, we have been able to compute, an abstract
representation of the input, this representation is first of all compact, more meaningful, it ensures that the
otherwise obvious differences between the inputs, no longer exist in this latent space. So, we had seen a
lot of pics, of sandy beaches with a blue sky in the background, they all looked different in the pixel
space, but once you compute that hidden representation, all of them would come close to each other.
Right? So, the fun lies in the fact that we are learning an abstraction for the input. Okay? But RBMS were
do able to do something more than abstraction, what is it that they were doing to do generation. Right?
So, RBMS are also able to do generation, can you do generation, with an autoencoder, what does that
even mean? What would Generation mean? What is the input and what is the output? What's the input



everyone? Hidden representation. And what’s the output ? NX. Right? Whether you call it X Delta or X
it's an X, weight it’s the image, if your, if your network has been trained on images given some hidden
representation.
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 I want to be able to reconstruct, the image or some X tilde. Right? So, can you do this generation with
autoencoders, if I want to do generation, which part of the network will go away it's useless for me, after
training of course, the encoded pathway when you say, X I assume you mean the encoded battery, I don't
need that, what is the input that I’ll feed? H and then the decoder willtake over and it will give me X tilde.
Right? So, this is what the question which I was asking it's, when I say can you do generation, with an
autoencoder, this is the situation that I am talking about that you remove the encoder. Now just feed an
edge, to the decoder and see what it generates. So, can you do this yes. Right? I mean what's the problem
with this? I just feed some edge belongs to Rd. Right? I'll just feed something yeah. So, in principle yes, I
mean the mathematical operations, you can do you can take an edge and try to reconstruct, but what
would happen if you did this you might get, meaningless X's, because you fed, it no we did not that’s the
whole point, you did not learn a probability distribution. We're asked a very similar question earlier in
RBMs and we'll get that so, but I just want you to think about it. Right?
 So, all  of you see there's some problem with this,  but probably it's still  not being able to make the
connection, to what the question that we asked for our games. Right? So, let's get there so, the problem is
that H is actually a very high dimensional vector. Right? So, it's think of this, I mean I can't really draw
high dimensional spaces. So, I'll just thought this is the high dimensional space. Okay? And now this
space actually has many, many, many, many points. Right? But actually the edges, lie on a very small
subspace, in this large space. Why is it so, where did the edges come from XS? So, X itself lies in a very



high dimensional space, of this high dimensional space ,the actual image is lie on a, very small, small
subspace. Right? So, the images are actually on a very small subspace. So, it's quite natural that when you
are trying to map them, to hidden representations they, will also belong to a very small subspace, in this
large space. Right? So, now can you tell me a problem, in feeding H to the decoder and expecting it to
generate an image from there, if I feed in this H, what will happen? It does not come from that space,
which it has actually learned. Right? It’s some, some arbitrary things it will generate an arbitrary, output
do you get that. Right?
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 So, the question which I am trying to ask is, of all the possible values of H, H is a vector in Rd. Okay?
It’s a D dimensional vector of all the possible values of H, which ones can I feed to the decoder, what's
the answer to that and give me a probabilistic answer or rather an answer in terms of probably, I want to
feed the decoder those edges, which are highly likely given the exes that I had seen during race, then the
moment.
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 I start talking about likely, what am I talking about, probability distributions. Right? So, what I want to
actually do is? I want a distribution over the edges, then I want to sample from this distribution. And then
take only the most likely edges. Right? So, in this case the example that I showed you, this was the
manifold on, which the true etches like, if I’d learned a distribution, now it's very hard to explain this in a
2d case, but if I learn a distribution then what I wants that, it would have a very high probability for this,
region of the space and almost zero everywhere else. If I had such a distribution, if I sample from this
distribution ,then these are the vectors, which I am going to get and that is fine, because my model knows
how to deal with that, does that make sense. Okay? So, you see the problem with autoencoders, what does
it give you, a hidden representation, but that's no that’s probabilistic versus, it's yeah, what's the other
thing deterministic. Right? So, if I give you an X, it will give me the same hidden representation, every
time. Okay?
 It does not tell me a distribution, over the hidden representations is that clear. Right? For a given X, if I
feed it to the encoder, I don't have the encoder equation here, but this is what IRA encoder equation, was.
Right? WX plus B and once my parameters are learned, no matter how many times I feed X to this
equation, I am going to get back the same H out, this is a deterministic function. Okay? However in the
case of RBMS, we were actually learning a probability distribution. Right? We were learning that given
an X, what's the probability distribution over the h space. Right? So, I was I was able to do this, that
means if I give you an X, every time will not get back the same hidden representation, what you will get
back is the probabilities of each of these hidden values taking, on a value 0 or 1 and then you sample from
that distribution. Right? So, what it will tell you is that suppose there are three hidden dimensions, then
what did we give you? What RBMs give you is this probability, avian remembers this that, this is the
sigmoid function that we learn and suppose, it says this is 0.4, this is 0.3 and this is point 8. And now the
way you construct the hidden representation, is that you sample from this distribution. Right? And you
decide to set the value to 1, if you are sampling from the uniform distribution, if the number that you get



is greater than 0.4, you will set it to 0, if you get it less than point full you will set it to 1. Right? So, that
way you will get the restitution, get the actual value of H. So, not getting a single H you are getting a
whole bunch of H, which come from this joint distribution, does that make sense. Right? So, as opposed
to Autoencoders RBMs, were actually given you a distribution, over the hidden representations. Whereas
autoencoders give you one fixed hidden representation, for any given input, is that difference absolutely
clear please raise your hands if it is clear. Okay? Good. 
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Similarly the decoder, in a case of an autoencoder, is also deterministic, if I give it a hidden representation
it's going to give me one X tilde back. Right? It's not going to tell me that for this hidden representation,
these are all the possible X's that I can generate. Now tie this back to the hidden representation story that
we have. Right? So, hidden representations captured, things like, is this image going to be sunny, is there
going to be an ocean in the background, is the B is going to be white or sandy, are there going to be trees
are there going to be people and so on, if I fix the values of all this if I say that, yes it's, it's sunny, yes
there's an ocean no it's not a, white beach I know there are no trees and yes there are people, even if I fix
this latent distribution, there is a whole bunch of images, which can come from this latent representation,
it's not that there is a one-to-one mapping, between this latent representation and the set of images that
you can draw. Right? For the same description, sunny beach with white sand and people on it I can get
many, many possible images. So, what I have is a distribution over the input space, given the latent
representation and not a deterministic function. Right? This probabilistic interpretation was captured by
RBMs, but  not  by autoencoders,  although both give you an abstraction,  RBMs were also able to do



generation, various auto intruders cannot do that does, Evan completely get this part of the story, the
difference the I'll not call it a limitation, but how auto-encoders differ from RBMs, although you could
potentially use both, to learn an abstract representation. Okay? Okay? 
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So, now that's going to be the basis for the rest of the discussion, what we are going to look at now is
something  known as  variational  autoencoders,  which  are  the  same structure  as  an  autoencoder.  But
instead of learning a fixed representation, they learn a distribution over the representation, space. Right?
So,  now we can have a  variational  Autoencoders,  which will  give us  the  two quantities  that  we are
interested in,  P of  H given X and P of  X,  given H.  Now in the remainder  of  the  slides,  just  to  be
consistent. So, unfortunately when people talk about, RBMs they use they don't even use X, energy they
use V and H, but for some reasons when they talk about VAE is, they use X and Z. Right? So, for the
remainder of this, talk to be consistent with the literature, on VAEs I will also stick to X and Z, but the
mapping to RBMs that X are the visible variables and H is RB or the Z's are the hidden variables. Right?
So, just be comfortable with this transition and at some places I might have, again used H by mistake
instead of Z. Right? 


