
Lec 19.3
Setting up a

Markov Chain for
RBMs

Let's start so, remember these questions the first one was, what the Markov chain is? So, we'll start with
setting up  the  Markov chain,  for  RBMs.  Disclaimer, for  the  next  three slides,  you'll  not  understand
anything, why I am doing? What I am doing? But, it will become clear later on. Okay? So, let's just
follow the procedure and then look then, then let's talk about, why we did that procedure? Okay? 
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So, we begin by defining our Markov chain. So, once again for clarity, our random variables, per v1 to
VM and H 1 to Hn and I'm just renaming all of this as X 1 up to X n plus M. Okay? So, time step 0, I’ll
just initially as a chain with some, random variable, not random variable, sorry, some random value.
Okay? So, I'll just sample some, value from the space that I have, 0 comma 1 raise to n plus 1 and say this
is the vector which I have constructed. Okay? Now, I need to construct a Markov chain. So, I need to tell
you what X 2 is going to be? What X3 is going to be? And so on. Okay? In fact I can tell you a Markov
chain, completely if I tell you. What two things if I tell you? Initial distribution and transition matrix, for
initial distribution I have just seemingly assumed a uniform distribution; I am just saying that I'll take any,
Possible ‘any value from the n plus M space. Okay? I've just taken the uniform distribution. Okay? And
now, I have to tell you the transition matrix, which I'll not tell you. So, at time step one, we transition to a
new value of x. So, this was the value of x, this was the value of x at time step 0. Now, at time step 1 we
transition to a new value of x. Okay? So, what does this mean? What do I mean by transitioning to a new
value of x and how do we do this transition? Wait so, let's see.
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 So, what do I need to do is? Given the value X equal to small X at time step 1, I need to transition to a
new value, X equal to Y, at time step 2 that's what I mean from transitioning from one value to another.
Right? So, remember that, the number of customers was transitioning from one particular vector value, to
another particular vector value 8. So, that's how the transition happens? And the way I’m, going to do this
transition, is the following, I'll sample a value, I ,from 1 to n plus M, where n plus 1 is the tote n plus M is
the total number of random variables that I have, in my X. Right? My X, is a collection of random
variables and there are n plus M of those. So, I'll sample a value of I, from this range and I'll use a
uniform distribution. So, simple way of saying is I'll pick a number from 1 to n plus M. Okay? Now, I'll
fix the value of all the variables, except X I. Okay? So, let's not avoid, let's avoid confusion here. So, here
when I refer to X I, I don't mean the elements of the chain, I just mean the particular random variable, in
X. Right? So, I mean, one of the constituents of capital X, is that fine, is there confusion with that No so,
what I'm going to do is? Say I have sampled the value 2; I have picked up, 2 as the number here. So, I’m
going to keep all the other random variables, fixed I am NOT going to change their value. Okay? And I'm
going to sample a new variable, new value, for this random variable, using the following distribution.
Okay?  So,  I'm  going  to  sample  a  new value,  for  the  picked,  random  variable  using  the  following
distribution. So, this is a fair question to ask. Right? I’m asking that, given the, values of all the other
random variables, what is the probability of this random variable taking on a certain value, is that fine.
So, does it make sense to sample according to this distribution? So, I’m telling you how I'm, going to
define the transitions. Right? Instead of telling you the transition matrix. Right? Instead of giving you this
to raise to n cross, 2raise to n matrix, I'm just telling a procedure for transition. Right? And of course
eventually I will tell you how, this procedure actually gives you the matrix, I want to give you the matrix.
But,  I’m not  giving  it  to  you;  I'm giving  you a  procedure.  And  now, I  will  show your  one-to-one
correspondence between this, procedure and the matrix but.  Right? Now, we are just focusing on the
procedure. So, the procedure is very, very simple, I have some configuration of the random variable X, at
time step 1; I am going to fix all the components of this random variable, except one of them. Right? So,
at time step 2, I'm going to keep all the values same, except for one of these. Now, whether I should keep
the same for this, variable or change it, I will decide that, based on the following probability distribution.



I'm not sure whether I know this probability distribution or not, I don't know that yet, but, I am assuming
that, this is some cloudy distribution according to which, I am going to decide, whether to change this
value to zero or keep it  one,  because there are only two possible values Right? Again this is just  a
procedure; don't try to find too much meaning into it at this point. Okay? Now I'm going to repeat the
above process, for many, many time steps, why I? Oh! Okay? X of minus I is not clear. So, X of minus I
means, all the random variables, except the I at random variable. Right? So, this is, X I, given X 1, X 2, X
3 and not X I and all the other guys. Okay? And X minus I, this small guy, is a vector of dimension. The
small X is a vector of dimension, every one, n plus M minus one; because I have dropped one random
variable from there, we get fine, details you seem to have blanked out, is that fine. Okay? Sigh n plus M
minus one. Okay? Is that here now. Okay? So, the notation I should have clarified. Now, repeat the above
process for many, many time steps. So, what does it mean to repeat the process, again now, I am at time
step one; again I am, going to pick up one of these random variables, see I picked up the random variable
three, I'm, going to set, the value of all the other random variables, as it is, I am NOT going to change that
and for this random variable, I am going to decide whether to change its value or not given the rest of the
configuration, is it fine and I just keep repeating this and notice that, it's not necessary that the value will
always toggle, it can actually remain the same also or not here, it can actually remain the same also.
Right? So, at this time step again I picked one as the random variable which I am NOT going to, which
I'm  going  to,  sample  again  and  fix  all  the  remaining  variables  and  at  this  time  step  based  on  this
distribution, I actually ended up keeping the same value. So, now we have to live with this for the next 15
slides or so. Okay? So, yeah! The last column is constant it because we have not picked, any of those
random variables, we are just working with these. So, the next infinite slides, just assume that the last
column is all ones. Okay? Thanks. Clear it, you seem to be or we changed it at sometimes no, no, no we
never picked this guy. Right? Unless we pick that guy it's not going to change. So, we picked this guy, is
that clear, a picking one variable either changing it or keeping it the same, based on this distribution, is
that fine, huh, ha, we will come to that, whether we are given this distribution not will come to that.
Okay? So, that means you are asking the question that, is this computable or not. Right? And computable
efficiently or not. Right? If so, then only I can transition. Okay? Right? So, again I just given you the
procedure I need to explain the procedure, is it clear, this is how my Markov chain is, set up. Okay?

Refer Slide Time :( 7: 59)



 It’s so, what are we doing here? How is all this related to our goals? Nothing is clear at this point. Right?
So, but, we’ll try to make it. Okay? Now we are violating the basic principle to define a Markov chain, I
need to give you the transition matrix and I'm just shying away from that, I'm not giving the transition
matrix, because I cannot give you one, because I cannot give you to raise to n plus M cause to raise to n
person values. Right? Not in the duration of this course for sure. So, that's why I am NOT giving the
transition matrix. But, we'll have to get to the transition matrix actually. How is it, easy to create this
chain and that’s the question which she was asking it, at every transition point I need to compute some
probability, I need to compute that probability, I'm not even told you what that probability is, I need to tell
you that, this transitioning is easy, I have not done that. And of course I have not even shown you, that the
stationary distribution of this Markov chain is the distribution that we care about. Right? I've not even
told you what's the transition matrix, is then the question of the stationary distribution does not even arise
it. So, these are the three questions that I need to answer, I need to tell you what is the transition matrix
explicitly in this procedure, I need to show that, it's easy to transition that means it's easy to draw these
samples x0,  x1, x2 across these time steps and finally I need to show you that,  this  indeed,  has the
stationary distribution, as a distribution that we care about, which is the Joint Distribution of our random
variables. Right? Where X is equal to a collection of the visible, as well as the hidden believers. Right?
So, you agree if I answer these three questions, then you'll not give me these blank faces that you’re
giving me. Right? Now, can you have a deal, yes or no everyone? Okay? Not everyone yet, but Okay? 
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So, let us answer these questions one by one it's a first, let us talk about the transition matrix, we have
actually defined at T, when I was giving you this procedure I've actually defined T although I did not tell
it to you explicitly. And now, let me tell you what this T is, what would T actually contain? Like what
would it actually contain? Quality of transitioning from state, a to state B for all possible a and B but
that’s what, it will contain it from any state X, to any state Y in my samples pace and my sample space is
to raise ton plus M. Okay? At least we know what T contains? So, T is this kind of a matrix, when did we
define such a matrix, did we define such a matrix? Did we define such a matrix? Actually, we did we
defined a very simple matrix T and it allows, only certain types of transitions. Right? So, let's see, what it
meets it, in particular under this matrix T, we allow only those state transitions, we differ from each other,
at max then one random variable. So, that’s the same as saying, T of XY, is equal to 0, if, do you get the
question. So, we define the procedure in such a way that we allow, only certain types of transitions that's
the same as saying that, I will not allow you to transition from state X to, state Y, if they differ in more
than one random variable that means, T of X Y is equal to0, if x and y differ in their values for well more
than one random variable, is it clear. So, you see I have defined a very, very sparse transition matrix and
that’s why I don't need to give you it, explicitly I don't need to give you the to raise to n plus m cross n
plus M values, I have told you how what are the zeros and this. So, I just need to focus on the non zeros.
And what were the non zeros? Did I give you a formula for then on zeros, did I. Okay? So, let's see. 
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So, we define T using this, I urge you to read it, understand it and explain it, to me focus on the zero
otherwise that’s always easy. So, let's see. Okay? So, let’s see this is our capital X, adding this some
problem here but, let's not tell them, say X 1, X 2, X 3 up to X n plus M. Right? So, it's saying that, P of
X Y is equal to 0 and I told you when it is going to be 0. Right? So, the otherwise case is clear, for the
first condition this is just a more formal way of saying that, there exists an I, well exist an umber I,
belonging to 1 to n plus 1 M, such that, for all the random variables belonging to X, if the index of that
random variable is not equal to high, then the value is the same across these two states, do you get that,
how many if you are able to read this now? So, I have these two states. Right? I have the state X and I
have the state Y, what this, cryptic looking first condition is telling me. Right? If there is exist a value I,
such that, for all the things which are not equal to I, those state values are the same, for x and y. So, x and
y remember our n plus m dimensional vectors. So, what it is telling is, n plus M minus 1 values are same
and one of these values may or may not differ. Okay? If that is the case. So, that is how x and y look, then
the probability of transitioning from X to Y, is given by this. So, now let's break, is that clear if the if
condition ok, everyone gets safe condition please raise your hands, if you don't. So, you have a state X
and state Y Okay? And so, what the first condition is telling is that? If there is one random variable, one
index, for which apart from that index, all the other state values are the same. Okay? Now, why this
particular form, what is this? So, what was Q I, Q I was the probability of picking that value I. Right? So,
that has to be so, I have picked the value I and then, what does this mean? Actually, we I what is this
actually a shorthand for, can you write the full formula for this, what is this a shorthand for? Are these
random variables, these are values assignments. So, what is the full way of writing this? X equal to Y I,
given or rather X I. Right? One of these guys taking on the value of I, I given that, all the remaining guys
have a certain value. So, this is n plus M minus1 and this is of course 1, you get that. So, is it clear now,
how I define the transition matrix, how many forget it that the procedure explicitly defined a transition
matrix or rather implicitly defined a transition matrix? Now, please raise your hands, Okay? Fine good.
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 So, Q I was a probability of picking, I as that random variable, which is going to differ and all of the
others are not going to differ. And P x I equal to y I, given the remaining random variables, I essentially
tells us, what is the probability that the higher random variable will take on a certain value, given the
values of all the other random variables. Is this easy to compute, what are our X's? What are our X's? X is
actually equal to, X is actually equal to, everyone, it's a collection of V comma H, this is some conditional
distribution defined on V comma H, you get that, do you think it would be easy to compute that, not sure
so, we will get to that. Okay? But, at least are these definitions clear to you, what each of these quantities
that you see mean, this if condition is clear to everyone, please the other hands, if you don't understand
that, you not understand anything for the rest of the course. No, how many if you don’t understand?
Please don't raise, so many answer, I mean you do if you have if you do not understand, but, how many
few don’t understand? Fix it, you don't understand? What were you waiting for? Okay? What do you not
understand? No, no that  guy, you have bigger problems actually huh,  the both the circles you don't
understand. Okay? So, what I was interested in this P of X Y. Right? Okay? And it would have been better
if I'd call this T of X Y. So, I am interested in the probability of transitioning from a state X, to a state Y.
Okay? So, let's have this as X and this vector of course has the assignments for all the random variables
that I care about, up to n plus n, that's some assignments. Right? So, these are zeros ones, zero something,
something, something. Now, I'm interested in transitioning to a new state Y. Okay? Now, what the else
part means zero otherwise tells me is that, if x and y, are going to differ in more than one random variable.
So, I, I have Y such that, it's actually try to erase it with my finger. Okay? If I have a Y which looks like
this. Right? So, it's different from X in two values, such transitions I was not allowing, if you remember
the procedure, I was only allowing you to change one value, that's the same as saying that if x and y differ
in more than one value, then the transition probability is zero, is that clear that's what the else part says
and if you understand the else part? Part is just con; I mean the counter of that rate. So, what the if part is
saying, this cryptic looking formula is saying is that, if there exists an I, belonging to n plus 1 m. Right? 1
to n plus 1 you have sampled 1 I, such that except for this I, the one which I have circled, for any other v,



any other index which is not equal to I, X of V is equal to Y of V. Right? So, these are all the indices, the
ones which I am now, highlighting with an arrow, are all the indices which are not equal to I, for all those
indices, X of J, let me call them, ‘J’ is equal to Y of J, is it clear, that's the same as saying that, these two
states, do not differ in these values, in this n plus M minus 1 values, they're only allowed to differ in this
one value. Now, for this  one value, whether to keep it  same or different  that's,  defined by this prod
distribution. Okay? So, first thing that I need to take about is, sample value of I, that's Q I, once I have
done that and now, tell  me what's the probability of transitioning to a new value, given all  the other
random variables have been fixed. So, that's what this condition tells me. Right? And what I was telling
you is that, that’s actually a short form. Right? Is that clear I. Okay? Where X minus I is all the other,
random variables in your collection, how many random variables do we have? N plus M. Right? So, this
condition is on n plus M minus 1 values and what you have here is, one random video. Okay? Fine Okay?
So, is that clear to you at this point? Okay? Now, Q I, my claim is its straightforward, because we assume
it's a uniform distribution. So, drawing a sample from this distribution is not hard, what I need to show
you that this other quantity is also, easy to compute. Okay? And we'll get that, that's what I'm going to
show you know. So yeah! This is messed up, just focus on the explanation that I gave. Okay? I did not see
it properly; I should have done that. Okay? Just focus on the expression which I gave you, if that is fine
then I will just change this condition to match that. Okay? Yeah! but, all this dries, right from starting the
description of RBMs,  I had said that we are only going to focus on binary variables, there is, we will not
be covering that in this course, we will have to assume certain forms for this distribution and so on it. But,
right Now, we are not interested. Okay? But, I’ve still not shown you that this is easy by the way that I
need to, to show you that, P of X to X, yeah! That's the same formula. Right? So, in that case Y is equal to
X I. Right? Yeah! Okay? Let’s not confuse the others. Okay? Yeah I get your point. So, I think there
should be a summation but, I will just get back. Okay? Anyone else? Okay? Is it clear; despite messing up
the most crucial side of the lecture is it clear. Okay? So, what I have done now, I have given you the,

Refer Slide Time :( 21: 26)



I've answered the first question, what is the transition, is there some confusion here? Sure. Okay? Have
answered the first question, what is the transition matrix and the answer is it's a very, very sparse matrix.
So, I don't need to define to raise to n plus m, cost to raise to n plus m values, I need to define only a few
of those and I have given you the form for that is that clear. Okay? 
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Now, we look at the second question: which was how is it easy to create this chain? That means at every
point, what's the computation that I need to do? I need to fix one variable that's easy, once I fix this
variable I need to compute that probability value. Okay? So, what’s the probability value that, I need to
compute this one. That the ayath variable takes on the value Y I.  Right? Given all  the other random
variables. But, this is how you would compute it. Right? This is how you would compute it, because all
you have is a joint distribution. Right? We are always learning the joint distribution. So, you have P of X.
So, that’s what you have? How many parameters does P of X have? How many parameters does P of X
have? How many random variables the stakes have, how many n plus, each of them is binary. So, how
many parameters does this have? To raise to, n plus M that means you have completely forgotten the
lecture on RBMS. But, it’s ok. So, 2 raise to n plus M Okay? So, this is not easy. Right? This is again the
quantity on LHS, requires you to give me2 raise to n plus M values. So, how is it easy? What do we do to
make a Joint Distribution easy, factorize it did we factorize it, did we factorize it for RBMS, yes, ok. If
you have forgotten it, let's see. Okay? This is not actually hard and I will tell you, why this is not hard. 
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So, consider the case when I is less than equal to n that means, the random variable that you have picked,
to change is one of the visible random variables. Right? You have n plus M values, the first n are the
visible variables, again goofed up. Okay? N and M we have confused throat. Right? So, it's one of the
visible variables. Okay? Let’s just focus on that. Okay? So, if I is less than equal to M that means I have
decided to change one of the visible random variables. So, if I have done that, then this is the prodded at
I'm interested in, which is the same as saying, I'm Interested in the probability distribution. Right? That
what is the probability that the I ate visible variable takes on a certain value, given the remaining visible
variables and the remaining hidden variables. Okay? But, this actually simplifies because, where are the
independence assumption and I just need to compute this probability of the ayath, visible variable taking
on a certain valuable value, given all the hidden random variables and that is equal to some Z, again is it
easy to compute the Z, did you derive this in your assignment, did we derive this in the last class, what
was this? Why are RBMS, neural network, what is this quantity? Sigmoid of, gradient, who said gradient?
random, sigmoid of summation W IJ, VJ plus CI. I mean even if you don't remember, you remember that
there was a neat  closed form solution to this,  is it  hard to compute this,  no it's just a simple vector
multiplication. Right? Is just a sum of W IJ, V IJ plus. So, that means I can compute the probability of, the
visible variable taking on the value 0 or the value 1. Okay? Because that's those are the only two values
possible and I can compute this very, easily? So, this was the term that, I was worried about and I was
worried about whether I can compute this efficiently, on the previous slide, Is cared you by saying oh this
has to raise to n plus m parameters. But, on this slide I'm, making a case that we have already simplified
this in the previous lecture, where we had said that, this just boils, down to computing a sigmoid function.
So, I have this sigmoid function and I will send the value to 1, with the probability Z and the value to 0,
with the probability 1 minus say. How do I do this in practice? How do I do this in practice? So, I
computed the sigmoid, suppose that gave me the value point 2.Okay?  That means that was point 2 that
means I need to set this, to point 2 with a probability 1 and 0 with a probability0.8. How will I do this
everyone? You will you will pick up a random variable, a random value between, zero to one sample from
a, uniform distribution. If the value is less than 0.2, you will set it to one, if the value is greater than0.2
you'll set it to zero. Right? So, this is straightforward, there is no problem in doing this. Okay? 
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So, essentially at every time step is the same as saying that, we sample a I, from a uniform distribution Q
I which is very easy to do, once we have done that, we sample from the Bernoulli distribution, with mean
Z and that's exactly, what we are doing with, it's a Bernoulli distribution, because it have binary variables
which can take on only values 0 to 1, the mean of the distribution is Z that means the probability of heads
or the probability of taking on the value 1 is Z. So, you just need to draw from this distribution and I told
you the exact procedure of how you will draw from this distribution, you’ll actually sample a number
from a uniform distribution between 0 to 1, how the value is less than Z, you will set it to 1, if the value is
greater than say - you'll set it to 0. Everyone is clear; everyone sees that this is actually easy to do, easy to
do. So, what is the question that I have answered now? It is easy to draw samples from this chain, starting
from any value X 0. I have X 0; I know how to transfer to X 1, X 2 and so on, efficiently. Right? The
computations involved are very simple, is that clear. 
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So, now we have answered the first two questions and now, what does the third question: that we need to
answer that the stationary distribution, is P of X. Right? We need to show that the stationary distribution
of this particular Markov chain, with the transition probabilities defined by that,  T which, I just very
clearly explained to you, is going to be, P of X that's what I need to show. Okay? How many of you are
completely lost at this point? How many of a following everything at this point? Okay? The safe question
is 80%, how many of you are falling eighty percent at this point? Please, raise your hands high up. Okay?
that's good, 20% of course you will go back and read the slide that's why, the slides are there. So, to prove
this, you're, going to rely on the following theorem: which is something known as a detailed balanced
condition, what this says is that? If I want to show that a certain distribution pi, is a stationary distribution
for a Markov chain, with transition probabilities P of X Y. Right? So, just be aware that I'm calling, ‘T’ of
‘X Y’ as ‘P’ of ‘X Y’. Right? With these transition probabilities and we actually had defined P of X Y on
that, slide which shall not be named, it's sufficient to show that, for all X Y belonging to my sample space
the following condition holds. Okay? I know it's very hard to understand, what this condition is? Why we
need to prove it and so on. So, I am NOT going to prove this theorem: we are going to take this theorem
for granted that the detailed balance condition is sufficient, to show that, the distribution pi is a strange
stationary distribution for the given Markov chain. Right? We are going to have faith in this theorem and
we'll show that, for our particular case this condition holds, hence the distribution that we care about is
the stationary distribution. So, you see where we are headed now, they are going to rely on this theorem
and prove what we need to prove. Okay? So, now what are P of X comma Y and what is pi, these are the
two things that will first define clearly. Right? Because these are the two things that we need here.
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 So, first P of X Y. Okay? That's what this is? I allow only transitions of one particular random variable
and for that random variable I define it, I was calling it, ‘P’ instead of pi, but now, on I’m going to change
this. So, we are going to refer to P of X, which is actually P of V comma H, as pi of X. Right? Just to be
consistent with the notation. Okay? Avian fine with that just P has become pi. Okay? And for shorthand,
instead of saying property of capital X, taking on the value small X, I'll just call it as, ‘PI’ of ‘X’. So,
when I say PI of a small letter, it means that the capital letter, taking on the small letter well whatever that
means. Okay? Okay? Capital X taking on the value small X is that fine I'm just going to refer to that as
shorthand and similarly when I say, X Y, it  actually means transitioning from. Right? That’s what  it
means, oh is that Okay? Right? So, you know what PI is and you know what P is and now, we need to
prove that this detailed balanced condition holds. Okay?
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 Now, there are three possible cases, first let’s agree that these are the three cases that cover all possible
cases. The first case is, when x and y actually differ in more than, two values. Okay? That's one case. The
second case is, when x and y do not, differ in any value. Okay? That means they’re exactly equal. At the
third cases, when x and y differ only in one value, are there any more cases possible, no it could be visible
or hidden. So, the same argument which I gave for visible that if it was, if it was less than n, then it’s easy
to compute, the same argument holds for if it was between n plus M. So, I’m saying there are three
possible cases, one is when x and y differ and zero values that means they're, exactly the same, the other
cases when they differ in exactly one value and the third cases when they differ in sorry, more than one
values, my discovers everything, there is no other case possible here, is that clear. Okay? So, if I prove
that for all these three cases, the detail balance condition holds, then I’m done well. Okay? So, let's start
with the easy case one: which is x and y differ in more than one state that clear, more than one random
variable, sorry. So, in this case, by definition you want to prove that PI X, PX Y, is equal to PI X into
zero, which is zero and the other way around also it's zero. So, trivially the detailed balance condition
holds, the case one was very easy. Right? The greater than one case, was very easy, when the state's x and
y differ in more than one random variable, it’s trivial. 
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Let's look at the other case, when X is equal to Y that means the case when they differ in 0 random
variables. In this case, again it holds trivially, PI X into PX Y is the same as PI X into P xx and PI Y into p
IX is again the same as PI X into PX X. Right? So, again trivially the detailed balance condition holds.
So, for clear. Okay? 
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Now, we come to the case, where x and y differ in exactly one random variable. Okay? So, in that case,
by definition we this is our LHS. Right? So, we want to show that this LHS is actually equal to the
following RHS; this is what we need to show. Okay? So, now by definition the second quantity, P of X Y
is actually equal to this, avian fine with this, do you guys want to break? So, anytime I get an answer
immediately, it's already 6:30, you have a long night ahead of us, 39 out of 61. Right? So, Okay? Let me
just finish this part so, it's logically done and then we'll take a break. Okay? So, I have just substitute the
value of P XY, which was defined on the previous slides, is that Okay? Fine lunch is going to do some
very simple trickery. So, let's again be sure that, this is the value that, one of the random variables takes
on, that is the ayath random variable takes all  and this,  is a vector because this is the value that the
remaining random variables take on. Okay? Is that fine. Now, this thing, I can write it as, this thing, a
conditional distribution is joint over marginal,  how many for get this? Please raise your hands up in
height. Okay? And this guy, I'm just going to split it into X I and X minus 1, is that Okay? So, this is the
same as saying that X I is equal to small X I and the remaining random variables equal to X minus I is
that Okay? And I've just split it into two parts; I'm just rearranging the terms. So, I have taken this and put
it here and I’ve taken this and put it here, however attach this Q I here, just are arrangement of the terms.
Okay? Now, what is this quantity? This is X I given, X minus I and what is this actually? PI by PI X, PI Z
by what is that this quantity everyone? Anyone who has a doubt about it? Please raise your hands and I do
not understand anything the rest of the course. Okay? So, this is PI y and this is X I given X I minus one.
Now, what is this combined? Actually there is one more step here, this X minus I, I can just call it even
why minus I, write because for the - I variables x and y are same. Okay? So, now what’s this circled
quantity? P of Y X. Okay? So, starting from the LHS we have come to the RHS. So, we have shown that,
the  detailed  balance  condition  holds  for,  all  the  three  cases,  which  were  possible,  hence  PI  is  the
stationary distribution of Earth Jupiter, what? The stationary distribution of, of this Markov chain. Right? 
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So, we have setup the Markov chain, in such a way that we have been able to prove that the detailed
balance condition holds for all these three cases. This is the case 1, this is the case 0 and this is the case
greater than1. Right? For all these cases it holds. So, that means if we run this Markov chain, for enough
number of time steps, we are going to reach the stationary distribution that we care about if you keep
sampling, values from this Markov chain, eventually we will get values, which are same as if they had
come from the distribution that we care about. Right? And even after we reach the stationary distribution,
the sampling process remains the same. Right? You’re going to use the same sampling process, which was
set,  one  value,  keep  everything  as  the  same  and just  change  this  value.  But,  now with  this  simple
procedure actually, have started getting, actually of starting getting samples, which come from your Joint
Distribution that you care about. So, you see the overall trick. Right? You could set up a chain, which is.
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 So, these were the things that we cared about. Right? Define what a Markov chain is? Have you done
that? Right? How we define the transition matrix done. Okay? Is it easy to sample from this chain, done,
have you shown that the stationary distribution of this chain is the distribution that we care about done,
have you shown that the chain is a reducible and a periodic done, you kind of showed everything that we
had to prove, to what effect we are proving all this is still not clear. But, we’ll get there but, this is one
thing which we have not shown, remember the statement of the theorem had that this, chain has to be a
periodic and irreducible,  I  have not  proved that,  I  am not  even defined what  a periodic is and what
irreducible is. So, we'll quickly, take a look at it it's, it's the easy part of this lecture.
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 So, we'll just do that quickly. So, first I look at the definition of irreducible. So, a Markov chain, is
irreducible, if when one can get from any state, in Omega Rights, Omega is your entire state space, this
was earlier defined using that stylish X or its 0 to1 raise to n plus m in our case. So, in your state, in your
state space, if it is possible to reach any state, starting at any initial state. Right? So, you have, to raise to n
plus M possibilities for this and you have to raise to n plus M possibilities for this, what I'm saying is
that? If I want to reach from any state to any other state and there exists a value K, such that after that
many steps, there will be some probability that I am going to be able to reach this other state. Right? So,
in other words the, other way of looking at it is that, it is not the case that, if you have one of these to raise
to n plus M values that you start from, the remaining 2 raise to n plus n minus 1values are reachable, from
here it's not that they're a particular state, which is not reachable from there. So, it's not the case that, the
probability of reaching a particular state, starting from any other state is 0 that's, what it means irreducible
because the chain will continue, is that fine, is the definition clear, what irreducible means? Please raise
your hands if it's clear. So, it basically just means that, I know that, after some K steps at least, there is a
finite probability of, reaching any state starting from any other state. So, this holds for all I comma J
belonging  to  Omega.  So,  what  about  our  Markov  chain  is  it  irreducible?  So,  a  Markov  chain  is
irreducible. So, you have these two raise to n plus M values that your States can take. Right? So, let's see I
started with one of these values. Okay? And now, the question that I'm interested in is that I'm going to
run this Markov chain for many time steps. Okay? Now, the question that I'm asking is that is it possible
and if I take any other state, from this to raise to n plus M States, can I reach that state, even if I run it and
I'm not putting any restriction on Carol, I'll keep running it. Okay? Is it possible that at some time step K,
arbitrary time steps K, all these to raise to n plus M values, are reachable, irrespective of where I start
from. Right? So, if there is a break in between, if there is a case that, I cannot reach one of these values,
then it would mean that this probability, is equal to 0 for all case, there does not exist a single K, for
which this probability is greater than 0that means no matter how, long you run the chain, starting from a
particular state, you cannot reach this other state. If that happens, the chain if that does not happen, then



the chain is called, ‘Irreducible’ that means given any state, starting state, you can reach all the other
states after some number of time steps and that's what a reducible means.
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 So, the Markov chain that we had is it irreducible, yes. Right? And you can take the very simple case; the
most difficult transition would be starting from all zeros and going to all ones. Right? Because you are
allowed to only change one value at a time. Right? Even in this case, it's possible to reach from all zeros,
to all ones and if you could do that, then it's possible to reach any state from anywhere and this is a very
intuitive explanation, is that clear, everyone gets this, should be straightforward to see that the chain is,
irreducible. Okay? So, we can prove this more formally, but we are not going to do this, we will just live
with the intuition that, this chain is irreducible hence 1 red mark which we had in a theorem: that it was
true only for irreducible Markov chain, we don't need to worry about this. 
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Now, the other thing is even more cryptically defined. So, a chain is called, ‘A periodic’. If the greatest
common divisor of this set is 1, what is the set? What does this set contain? All the time steps at which,
starting from the state I at time step 0, I will end up in state I again. Right? Starting from time step state I
at time step 0, there is a finite probability, greater than 0 that I'll end up at time step at, at the state I, again
at the time step K. So, this is actually a set of the following form that maybe, if I start with some value or
some I at time step 0, at time step 1, I can it's possible that I’ll stay in the same value. It to it is possible
and so on and this is just a collection of those numbers. Okay? So, this set is a collection of all, the time
steps, at which starting from one value, there is a finite chance that I can reach that value again. Okay?
Now, instead of a periodic, let's talk about periodic, if this was periodic, what would you expect this set to
contain? What does periodic mean? Something which happens, periodically, something which happens
periodically? Right? So, then what kind of values with this set contain, what kind of values with this set
contain? Multiples of some number. Right? 
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So, it contains so, this is all fine. If it contain these kind of values, a 3, 6, 9, 12that means it's saying that
starting from state, from a value, of former state I at time step 0, I can only reach the state I again add
these, multiples that means this is periodic. Right? I cannot reach it at anything which is, not a multiple of
this period, is that fine. So, that’s what periodic means? So, periodic means that this, set would have a
greatest common divisor, which is greater than 1. Right? Because it the greatest common divisor would
actually be the dash, of the Markov chain, the period of the Markov chain. Right? Now, what a periodic
means is that? I will get a set, which does not contain such multiples, it contains some arbitrary values.
So, it might contain 1, 3, 5 and so on. So, now if I try to take the greatest common divisor of this set, I
will get 1, 1 can be the only greatest common divisor of this set. So, it just means that there is no, there is
no pattern to this, there is no period after which this repeats, repeats it can arbitrarily grid, return to the
same state, after any number of time steps is that clear. So, it's always helps to understand periodic, then a
periodic is just the reverse of that. So, this is what periodic is? So, a period in and if it’s periodic, you will
have a greatest common divisor, which is not equal to 1, you will have the greatest common divisor as the
period of the chain.  But,  if  it's  not  periodic,  then you'll  just  have the greatest  common divisor as 1,
because  that's,  only  the  device  greatest  common divisor  of  all  the  elements  in  your  set,  no  strictly
speaking no. Right? So, periodic has to be 0, 2, 4, 6, 8 and so on. When you're just changing I so, by
shifting then it would be periodic. Right? So, then it goes in that case it would be, K is a natural number, I
had asked for a different end, but, ok. K is a natural number. Right? Because it can be time steps, which
are greater than 1. Okay? So, I mean just don't, look at this is unfortunately the way of stating, what a
periodic is that but don't focus on that, just understand what periodic is and a periodic is just the opposite
of that, is that clear. Okay? And that's why that greatest common divisor comes in there. 
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Now, intuitively do you think our chain is periodic or a periodic a periodic. Right? So, again we can
formally prove this. But, we're just going to rely on the intuition that this is a periodic and more. 
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So, now I am done with all the parts of the proof. So, I have set up a Markov chain, which is easy to draw
from and I've shown that the stationary distribution of this Markov chain is the distribution that we care
about, even when I reach the stationary distribution, I can still, keep following my process of sampling,
which is the Markov chain process. But, now after this point, I start getting samples, as if, they were
drawn from P of X or PI of X is that clear fine.
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 So, I have done what was required.
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