
Lecture 19.2
 Why de we care about Markov Chains?

So, let's start the next module, where we will talk about, why do we care about Markov chains, in the
context of RBMS. So, that's what we are going to do in this module. Okay?
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 So,  recall  our  goals  goal  one  was  sample  from P of  X goals  two was  compute  this  interact,  able
expectation and of course both the goals are related. Okay? Now suppose we set up a Markov chain, X 1
X  2  up  to  whatever  such  that  what  is  the  condition,  the  dash  of  this-  is  equal  to  dash  stationary
distribution, of this Markov chain, is P of X. Right? Okay? And further it is easy to draw samples from
this chain. Right? There's no point in computing, in constructing a chain such that at each point if I want
to sample something from the chain, is as hard as sampling from the original distribution. And that's what
we saw in the setup. Right? Because at every time step I had to compute this mu 1 mu 2 and so on which
was as hard as anything else right because, I have to do this very expensive matrix multiplication. Right?
So, I should be able to set up with some Markov chain, such that it is easy to draw samples from that
chain. And the stationary distribution of this chain, is the distribution that I care about, P of X and now
because it's easy to draw from this chain, once I reach PI and once I start drawing samples from there, it
would be easy for me to draw samples from the distribution that I care about, does that statement make
sense, irrespective of whether it's clear, how to do it or not at least the goal makes sense. How many for
clear with what I just said? Please raise your hands, I in above. Okay? So, then it would mean, if these
conditions hold that if it is easy to sample from the chain and if the stationary distribution is P of X then if
you run, this chain for a large number of time steps, then eventually we'll start getting samples from P of
X, is it fine. Okay? And once we have that once, I reach a time step L, at which how somehow know, that
this is a stationary distribution, then from that point I onwards I can take n samples, because I know these
n samples would come from the distribution, that I care about which is P of X. So, then I can approximate
this  expectation,  by  this  empirical  expectation.  Right?  So,  that’s what  I'm interested,  in  doing  I  am
interesting setting a chain, such that a stationary distribution, is the distribution that I care about, then run
this  chain  for  long  enough.  So,  that  I  get  samples  from this  chain  and  then  use  those  samples,  to
empirically compute the expectation that I want, is that here. Okay? 
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Fine so,  now we will  get  into a more formal discussion and my formula mean I  will  bring in some
theorems. Right? So, if X naught, X 1, up to X T, is an irreducible, time homogeneous discrete when I say
discrete I mean discrete time as well as discrete space, Markov chain with stationary distribution pi. So,
far nothing really groundbreaking you know all this, this is a this is the Marko chain that we just saw, then
this theorem, tells us that, if I take samples from this chain. Okay? Then the expectation of a function f of
X, under the stationary distribution PI, I can get it by just doing this empirical estimate. So, this empirical
estimate, will almost surely converge to the true expectations, remember this is all asymptotically, that
means as n tends to infinity right and we are never going to do n tends to infinity, but still is the statement
of the theorem clear and if I have such a chain and if the stationary distribution, of the chain is PI, then if I
take a large number of samples from this chain. And empirically compute the expectation. Right? This is
the same if you remember; this quantity is the same as how I had estimated the average weight of the
expected weight of the population. Right? I had taken some T samples and I just taken the average of the
weight that’s exactly I had done it  empirically. So,  if you have samples from the distribution, I will
empirically  estimate  the  expectation and I  can be almost  sure,  that  is  going to  converge to  the  true
expectation, if n tends to infinity, for all X capital X belonging, to what is this actually? The stylish X
what is it in R case? Sample space what is it in R case? The answer is simple, 0 comma 1 raise to M.
Right? But I'm just writing in and because the sample space could be anyone, anything, right it's not that
it's only related to binary sample spaces it could be anything. So, for us at0 1, raise to n but this could be
any  sample  space.  And  X  belongs  to  the  stationary  distribution  R  X  is  X  follows  the  stationary



distribution pi and this holds for any function, which maps from the sample space to a real value. Right?
So, in R case the sample space is 0 to 1 raise to n. So, any function which takes me from this sample
space to R, the above statement holds true for R. Right? In particular, it will hold true for whatever we
had inside those two nasty-looking expectations, is that fine, is it clear. So, remember the origin of all this
is those two expectations that we care about, when we compute the gradient of the log-likelihood, with
respect to W IJ, we had these two expectations. And expectations are nothing but e with respect to a
distribution, of some function. So, irrespective of what that function? Is the above theorem will hold true.
Okay? Further if the chain is a periodic, then the probability of XT, taking on the value small XT, given
some value of x 0, approaches PI of X, what does this mean? So, irrespective of where you started from,
at time step T you are interested in finding on, what is the probability? That the random variable capital
XT, will take on some value, let's say small XT that is the same as so, P of XT, equal to XT, irrespective
of where you started. Because it's for all small X T's and for all small X not, the same as PI of X that
means, is the same as P of XT equal to XT. Right? Where P this, P I'll just call it P one is a stationary
distribution. Right? So, I can run the chain for a long time and after a point, I can be sure that even though
the samples are coming from this distribution, they are actually coming from, my stationary distribution,
that’s just  a fancy way of  saying the same thing that,  once you read the stationary distribution,  the
samples are coming from, the stationary distribution .Everyone is clear with, this. Okay? That’s why as
this again asymptoticle. Right? So, as n tends to infinity, so that means it is you start from the starting
state, some point it is the stationary distribution and now n tends to infinity rate. So, now at that point,
everything starts coming from this stationary distribution. So, Part A of the theorem essentially tells us
that, if we set up the chain, such that it's stationary distribution is the distribution that we care about, then
we have a clean empirical way, of approximating the expectation, that we care about, part two of the
theorem, which is if further, tells us that if you set up, the Markov chains, as that is stationary distribution
is  the  distribution  that  we  care  about,  then  after  some  point  we'll  start  getting  samples  from,  this
distribution of course Part A and Part B are related, because we can approximate, the expectation, because
the samples that we are getting are from the two distribution that we care about. And it does not matter,
where you start from because, the theorem holds for all small X naught and small XT belonging to your
sample space. Okay? Is that fine.
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 So, now given this setup, our task is cutoff. We first need to decide, what our Markov chain is going to
be. Okay? I’ll tell you, what the Markov chain is going to be, to define a Markov chain, I should tell you
what the transition matrix is, because a Markov chain depends on the transition matrix. Okay? I need to
tell that it is I need to show, that it is easy to sample from this chain, I do not need to do this expensive
computations, every element, of the chain, can come efficiently, without any expensive computations, I
need to show you that the stationary distribution of whatever chain I compute, is going to be P of X That’s
the distribution that we care about. Okay? I need to show you that the chain is irreducible and a periodic,
why was those are the two things which I had not defined. And the theorem relies on those two property.
Right? The chain has to be irreducible; it has to be a periodic I have not defined what these mean yet? I'll
define it  soon and I  also give you an intuition,  for why whatever chain we set  up is  A periodic  an
irreducible. So, if I show you all of this, then we are done. Right? Then I can get you samples from the
distribution that you care about. And then you can compute the expectation that you care about. Okay?
And for ease of notation, this capital X that I have been talking about, which was this random variable. I
am going to use X to denote, the random variables that we had in the case of RBMS, which were these M
visible units and N hidden variables all of this collectively, I’m going to call as X. And so, X actually
belongs to 0 comma 1 raise to, n plus M and I will refer to the individual elements of X, as X 1 X 2. So,
these are not the elements of the chain, this are the dimensions of one particular random variable. Right?
So, the random variable itself is of size n plus m. And these are the elements of that random variable. Is
this change of notation clear to everyone? Otherwise you not understand anything going forward. Okay?
So, the Club sum total of the visible and the hidden variables, I am denoting it by capital X it contains, all
the hidden and the visible variables. Is that clear? Okay?


