
  

Lecture 19.1 
Markov Chains

And  today  we're  going  to  talk  about,  Markov  chains  Gibbs  sampling,  for  training  RBMs and  then
contrastive, divergence for training RBMs. So, it’s a, it's a longest lecture, I think it's also one of the,



hardest lectures, just to set the expectations right. And so, that you don’t doze off. There's going to be a lot
of material, that we'll cover today and also a lot of math, that will do around, along the way. But I've tried
my best to simplify things and I'm pretty sure that if you say stay awake and attentive, you will get most
of the stuff. Okay? Okay.  So, with that very encouraging note, let’s start the lecture. So, we will start with
Markov chains. 
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So, let us first begin by restating, our goals. Right? So, our goal is that we have a random variable, which
is a high dimensional random variable. And one thing that we're interested, in is drawing samples, from
the  joint  distribution,  from  which  this  random  variable  has  come.  Right?  So,  we  call  this  a  joint
distribution, because it has, one zero two four random variables, X 1 2 X 10 2 4. I've never seen these
guys before. Okay? So, we have this joint distribution, over these N or 1 0 to 4 random variables and we
want  to  draw samples  from,  this  joint  distribution  and the  other  thing  or  a  related  thing  that  were
interested, in is that given an arbitrary function f of X write a function, of these random variables, we
want to compute the expectation of that of this function, under this distribution. Right? And that's exactly
the two expectations that we're interested, in those expectations whatever is inside the expectation, you
could think of that as a function of this random variable. Right? So, given any arbitrary function, we want
to compute this expectation. And of course these goals are related because if you can draw samples, you
can empirically compute the expectation and so on, but just to state them clearly, these are the two goals
that we are interested in and now, you're going to use as Gibbs sampling, which is a class of metropolises
things algorithm, I don’t know why you would care about that. But it’s a class of some famous algorithms
and we will use that to achieve these goals. So, first thing that we will do is we'll first understand, the
intuition, behind this and then get you to the math behind it. Okay? Okay.
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So, now instead of a single random variable. Right? Which is x belonging to RN, suppose we have a
chain of random that means I have X 1, X 2, X K, each of these excise belongs to RN. Right? So, you
could think of this as a friend sending us images, on day 1 day, 2 day, 3 day, 4 and so on. So, on day 1
here send us one image, day tow, another image and so on. So, he's seeing this chain of random variables
way. And the eye here corresponds to a time step, it's a discrete time step, day 1 day, 2 and so on it's not a
continuous time step. And one example which I gave you was images, the other example could be that I
have this n dimensional vector, which tells me the number of customers, in a restaurant on day 1, then I
have the same vector which tells me the number of customers, on day2 and so, on. Right? So, all of these
are X's, but they are also associated with time because it's on, day 1, day 2 and so on. So, I have this chain
of random variables. So, it could either be the number of customers in a restaurant or the images or
wallpaper sent to us on day 1 day 2and so on. But for this discussion, I’ll just stick to the restaurant
example that we have this vector, which stores the number of customers, in a restaurant. And we have this
for multiple days and just to keep things simple. I will work with discrete variables, what do I mean by
that instead of actually having the counts, I'll just have, whether the number of customers was high or low.
Okay? Is that fine is a setup clear. So, we have X, which belongs to some space, RN or not R in a sorry, 0
comma 1 raise to N and then we have several of these on day 1 day, 2 day,3 and so on. So, that's the set up
that we are working, with so, we have a chain of random variables. 



Refer slide time :( 04:08)

Now on day 1, let x1take on the value, small x1. Right? And this small x1 is one of the 2 raise to n
possible values. Right? So, remember that X can take 2 raise to n possible values, with high low for each
of the N restaurants that we have. Right? On day 2let x2 take on the value X small X 2, which is again
one of the 2 raise to n possible values that it can take on. Now one way of looking at it is that, the state of
the random variable has transitioned fromx1 to x2 from day 1 to day 2 that's a fair way of saying this and
you are looking at this random variable the semantics of the random variable, remains the same across
time steps, it's the number of customers. But just the state has changed from x1, small X 1 to small X2.
And now on day 3, if I assume thatthere are X 3 customers, then I can say that the status transition from X
1 to X2 to X 3 and in general on day n, I can think of it that starting from some small X 1, on day 1 the
state has transitioned through x2 x3 up to XN. Right? Okay? 
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So,  we  are  now  started  talking  in  terms  of  states  that  the  random  variable,  can  take  and  we  are
transitioning between these states. Now an interesting question, to ask would be what is the most likely
value that the state, will take, on day I, given the states, from day 1 today I minus 1. Right? Can you think
of an interesting application of this, a financially lucrative application of this stock market. Right? So, you
know what the stock price has been over the past, hundred days and you would like to know what value it
could take on the next, day I know it's assumed discrete again high or low is what you are interested and
not the exact value of the stock. Right? Now more formally what we are interested, in is that we are
interested in the random variable X I, each variable in the chain is a random variable, taking on the value
small X I, given the states of all the, other random variables that you have seen previously it. So, x1 equal
to small X 1 X 2 equal to small X 2 and so on. Right? That's the question that we are interested in, now
suppose,  the  chain  exhibits  the  following  Markov  property.  Okay?  So,  I'm  calling  this  a,’  Markov
Property’, because I'm assuming that given the previous state, the current state is independent, of all the
other states. Right? So, I only care about, what the situation was on day I minus 1, once I know that I can
determine what the situation is going to be on day I and I don’t care about, what happened from day1 to
day I minus 2, this is an assumption again, this is something that we are assuming that the chain exhibits
this property. And this ties to all the model assumptions that we have been making so, far in the course so,
we're just making an assumption that this is how our chain behaves. Right? So, this is exactly what I said,
can you draw a graphical model, to represent this situation. So, the moment I ask you to draw a graphical
model, this is the first question that she should think about, for the first, I mean such a trivial question that
you'll not even think about, what are the? What other? Random variables in your distribution. Right? So,
what are the random variables in your distribution, x1, x2, x3 and so, on the capital x I are your random
variables. Okay? So, that's out of the way. So, now let's come to the graph what is going to be, what are
going to be the nodes in the graph? 
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So, you'll have one node, for every random variable that you have so, these are the nodes in the graph.
Now what are going to be the edges in the graph, I think everyone should be able to answer that and of
course  assume  the  Markov  property,  what  are  going  to  be  the  edges?  The  edges  indicate  what?
Dependencies and what do you know about Bayesian networks, given the  dash you are independent of
the dashes. We are the parents,  you are independent of the non-citizens. So, you know what you are
independent of given what? So, now what should be, the parent and I'm asking it very cryptically, but I'm
assuming we have done enough of this to be able to answer it. So, now what would be the parent of each
node, the previous node, given the previous node, it is independent of all the other nodes. So, you have a
very simple, Markov Bayesian network, where you just have these dependencies, between the previous
guy, to the current guy. Okay? That's very straightforward. Okay? 
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So, this property, where X I, is independent of X 1 to I minus 2 given X I minus 1 is called the,’ Markov
Property’.  And  the  resulting  chain,  X  1,  X  2  up  to  XK,  is  called  the,’ Marko  Chain’.  Okay?  Just
definitions,  further  since we are  considering this  cream,  discrete  time step,  so,  it  our  time steps  are
discrete day one day two and so, on they're not continuous it is called a,’ Discrete Time Markov Chain’,
moreover  since  we  are  consisting,  we  are  considering  only  discrete  values,  each  of  these  random
variables, is not in RN it's in 0 comma 1to n. Right? So, it's a discrete random variable. So, this is a
discrete time, discrete space, Markov chain. Okay? Is that fine. Okay? Why are we interested in Markov
chains? We don't  know yet. Right? So, we'll  get there soon, for now let us just focus on some more
properties, of Marko chains. And we'll soon tie it back to our original, description of approximating the
expectation and what. Okay? 
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So, let us delve a bit deeper into this and define a few more quantities. So, now this remember that X I,
can take on to raise to n possible values, wait just I’ll just call 2 raise to n as L. So, that it simplifies some
things for me. So, X I can take L values, where we all agree that L is equal to 2 raise to n. Okay? Now
how many values, do we need to specify the following distribution? How many values do you need to
specify? This L square right I mean order L square L square minus 1 why L square? For each value of X
minus I minus 1, I need to specify the probability of it being a 1or a 0. Right? So, this is how it is. Right?
So, I have X I minus 1, which can take on values 1 to L. Now for each of these I need to define, what is
the probability of X I minus 2 taking one of these values. Right? So, I'll have L square total values, is that
fine, avian is ok with that. And we can actually represent this by a matrix, of size L cross L and we'll call
this as a transition matrix, why transition matrix? Because, it tells us given a state, a at time step I minus
1, what is the probability of transitioning to state B at time step I, is that fine. So, that's why I will call this
a transition matrix, it is a huge matrix and as L cross L which is raise to n cross 2 raise to n entries, is it
fine. Okay? Now and the entry T a comma B in this matrix, although actually I have flattened the matrix
here. But you can imagine this is a matrix, where you have the X I minus 1 values as the rows and the
excise values as the column and the IG at entry tells you the probability of transitioning, from state I at
time step I minus 1, to state J at time step by, everyone gets that definition Okay? So, that's a matrix and
we'll call this a transition matrix, it's a huge matrix ok let's be aware of that. Okay? 
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Now we need to define this transition matrix, for every for all a comma B, that means, not the matrix
actually, we need to define T a B, for all T comma for all a comma B that means I need to define this
matrix, which has all the a comma B values in it, for all I why am I saying for all I? Say I have defined it
for time step 3. Right? So, it tells me how do I transition from value a at time step 2 to, value B at time
step 3. Now what does it mean to define it for time step 4, just repeat what I said how to transition from, a
at time step 3 to be a time step 4. Okay? So, why do I need to do it for every time step? Why can't just
have one T do you get the question how many if you get the question? Please raise your hands. Now the
Markov property tells us that it depends, on the previous guy. Right? But the Markov property does not
tell it that at every point, it depends in the same way on the previous gray, I'll give you a trivial example
where it will become clear, think of restaurants for example, Monday, Tuesday, Wednesday you see what
would happen? For example, transition properties may be different, for different days. Right? So, if you
take the restaurant, the transition from Friday to Saturday. Right? When you are moving into a weekend,
may be different as compared to the transition from Saturday to Monday, do you get that. So, from Friday
to Saturday, the property of transitioning from- hi would be, hi but on Sunday to Monday, the transition
probability  of  transitioning  from  high  to  high,  would  below.  Because  you  would  expect  for  your
customers on a Monday, does that make sense that's why it depends on the time step, where you are in the
time step? So,  in  general  you need to  define it,  for  every step of  the chain.  Right? So,  you need a
transition matrix, for every time step. So, you need these T 1,T 2, TK as if life was not complicated,
enough 1 T was 2 raise to n cross 2 raise to n, now I'm asking you to define several such, T's. Okay? Of
course we'll bring in our Savior which is some assumption. 
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So, we'll make an assumption that and will not make an assumption, actually. So, there are some Markov
chains, which are time homogeneous. So, that means that for such Marko chains, the transition matrix
remains  the  same  across  time  steps.  And  this  again  you could  imagine,  is  various  scenarios,  we’re
transitioning from one state to another, remains the same every day. Right? So, if we look at on a given
day and of course under certain assumptions, how many people who had taken a bus today we’ll take a
train tomorrow and vice versa. Right? So, you would expect over a larger population, for these transition
probabilities to be more or less stable irrespective of the day, of course you can again have the weekend
argument there. But still a we could have several cases in which you can assume that the Markov chain is
time homogeneous. Right? And that's a simplified that just simplifies our life, because we just need to
care about, one T in that case. Okay? So, that’s what this homogeneous, Marko chain means that the
probability of transitioning, from state a, at time step I minus one to state B at time step I, is the same
irrespective of what the value of I is, is the same on Monday, Tuesday, Wednesday, Thursday and so on.
Right? Okay? So, this is known as a time homogeneous Markov chain. 
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So, we have so, far what have we described we have described a Markov chain. We observe that it is a
discrete time Markov chain; we also observed that it is a discrete time discrete space Markov chain. And
now it's a discrete time, discrete space, time homogeneous, Markov chain that's what we are focusing on.
Okay? Now suppose the starting distribution at time step 0, is given by mu zero. Now what does this
mean? What, what do we mean by starting distribution at time step 0? What will this be a distribution
over? How many values will this be a distribution over a to raise to n values. Right? So, it tells us that of
all the to raise to configurations, which are possible, what’s the probability of any of these configurations
on day 0 at the starting time step. Right? So, how many elements does mu have. Right? So, 2 raised to n
is what it has. Right? So, in particular the8th entry of this vector, tells me that the random variable X 0
that means at time step 0, it will take on the value a. Right? So, this remember that X itself is a vector.
Okay? So, and there are 2 raised ton such vectors possible. So, what mu zero a tells me is that of all these
2 raised to n possible vectors, what is the probability? That X 0 will take on the value a, which is one such
vector, is that clear. Okay? Let's be very clear about the dimensions of things here. So, that there is no
confusion. So, the dimension of T was L cross L the dimension of MU is L. Okay? Okay? Fine now given
mu 0 and transition matrix T, how will you compute mu K, where mu K is defined as the following that
the 8th entry of MU K ,tells me the probability that the XK random will variable, will take on the value,
you get the question what is this mu K denoting. Okay? So, let's see you have X 1, X 2 up to XK and then
maybe even more. Right? Now again at X K this guy can take any of the possible, 2 raise to n values.
Right? So, mu K, is a distribution over these 2 raise to n values, is that clear. So, I am asking you at time
step K what is the distribution over these 2raise to n values. What, what values can the random variable X
K take with certain probabilities. Right? And in particular the a at entry of mu K, again tells me, the
probability that the random variable X K will take on the value a, is that clear. Okay? Now what’s the
dimension of MU K ,everyone, everyone L. Okay? So, it's 2 raised to n and whose a in't ND tells us the
probability that I just define. Okay? Now let us consider X 1. So, our first time step was X 0. Now I am at
X 1 and here's what my question, was I'll just repeat the question someone has given mu 0, someone has



given me the transition matrix. And now I'm interested in MU K in general. But in specific I'll start with
mu 1,I'm I want to find out, what is mu 1what's the distribution over these 2raise to n values? At time step
1that's what I'm trying to find out. Okay?
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 So, one of the values, are one of the entries, of MU K is x1 equal to B. So, which entry of MU K, is this
the B at entry of, MU K. Right? Just as mu K a was the royalty that x1 can take on value, sorry not mu 1
this is the first you know is that fine. Okay? Now let us consider P ofx1 equal to B, I can write it as the
following, what have I done here, introduce a variable and then marginalize Doris this is a fair operation.
Okay? Fine now let's see. So, what does the above some captures, it actually captures that what is the
priority of reaching, x1 equal to B, irrespective of where I start with at x0equal to a any of the x0 that I
start with I'm just summing over all the possible paths, of reaching the value B at time step one, starting
with any value at time step 0, is that fine, that's what this sum is capturing. Okay? And now of course this



joint distribution, how will I factorize it? I can just use the simple chain rule, at this point. Right? So, X 0
equal to a, X 1equal to B, X 0 equal to a,  what is this everyone? Mu 0 of a what is this everyone,
everyone? T ab. So, that means this is the following quantity. Right? So, the probability, that X 1 will take
on the value B, at time step 1, can be written as a neat function, of your starting distribution and your
transition matrix, if I know these two I can compute it. Right? Of course as I’ve just shown it for time step
1, I need to convince you about this for any arbitrary time step also. Okay? So, but at least for time step 1,
all of us are convinced, but we did we do not end there, let us come up with a more compact way of
writing, this so, this what I have done here is tell told you how to compute, one of these probabilities. But
how many such probabilities, am I interested in L of these. Right? I want to know x1 equal to ABCD up
to how many other entries I have. Right? 
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So, let us consider a simple case, where L is equal to 3 instead of 2raised to n. So, I have 3 possible states
and I can transition to the same three states, at time step 1 and these edges between these states, tell you
the transition probabilities. So, these are the TA B's and the values that you see under the nodes, are what
mu zero. Right? So, these are mu 0 1 2 3. Okay? Sorry mu 0 of, state 1 state 2 and state 3 is that fine.
Now let's see what are and of course again we should always be careful about the dimension. So, this is
our cube and this is 3 cross 3 everyone is fine with that. Okay? Now what does this product actually give
us if I take this is a vector and a matrix if I take its product, what will I get? What will I get everyone are
you sure you'll get me one. Okay? Good. So, in fact if you look at it Right? So, if I look at the second
entry of the resultant vector, first of all, all of us are sure that this is a vector by a matrix so the result
would be a vector. Now if I look at the second entry of this vector, it’s actually a sum of, an element by
some of the multiplication of these two vectors. And that's exactly what I had here. Right? Mu zero a,



where a goes from one to three, multiplied by p1 b T to be and t3 b and that's exactly what the second
entry of this vector capture. Right? All of you get this how many fake clear with this. Okay? Good. So,
we can write, this compactly as mu 1, is equal to MU 0 into T and I’m sure all of you see where we are
headed with this, all of you see that. Okay? 
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But we will still do it let us consider P x2equal to B, again I will follow the same but I see P, I can write it
as  the  following  Joint  Distribution.  So,  again  I  have  introduced  the  random  variable  X  1and  then
marginalized over it. Okay? Again the same story it captures, how I can reach B starting from any of the
values of x2, again I will factorize it using the same, chain rule what is this? U1 of a, what is this? Ta b it
should have been t1 a B, but we have assumed that t1, t2, t3 everything is T. Okay? So, this is again mu
180 TB.
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Again I can write, the entire thing compactly as mu and T. Right? What is mu 1, mu naught into T. Okay?
So, in general, if I ask you mu K, this was actually mu 2, in general if I ask you mu K, what is it going to
be mu naught into T raise to K. Right? So, given the initial distribution and the transition matrix, you can
compute the distribution, at any given time step. Okay? For the given assumptions that is a discrete time,
discrete  space  and time homogeneous,  Markov chain.  Okay?  If  it  was  ma not  time  homogeneous  I
couldn't have, used this. Right? Because the T's would have been different. Okay? Fine so, a distribution
at any time step, can be computed by finding the appropriate product, from this series, music t1, T Square,
t cube. And so, on and this is all very easy. Right? Does anyone see a problem with this I'm assuming that
you are given mu R mu naught and TI, just need to give you these two quantities and you are set for life.
What’s the problem here? What’s the problem here? Computation. Right? So, mu naught, is a 2 raise to n
dimensional vector, T is a 2 n cross 2 n matrix, you need to do this expensive computation, to get these
distributions. Right? But later on we will see that we don't need the full product, we can do something
smartly and get by without actually computing, this product, but still get the distribution. Okay? 
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So, that was one set of definitions, now we will just do a few more definitions and then eventually get to
the point at some point, like we only have April 26, as the last degree. So, if at a certain time step T,
suppose mu T, reaches a distribution PI, such that PI into T is equal to PI, what does this seemingly
profion statement, Ellis I hear the word stationary over one honey many years. Okay? So, mu 0, mu 1,mu
2 and so on. Right? I was just computing all of these and I can keep computing it and see at mu K,
whatever I reached, I'm just calling it by PI I can call it anything right I'm just calling it PI. Now mu K
has a certain property that if I multiply it by T, I get mu K back. Okay? And here of course instead of MU
K, I am just denoting it by PI. Now if this happens, what is mu k plus 1? It's mu K into T. Right? But I
already know that's equal to, MU K is that fine. So, now from this time step onwards, the distribution for
XK plus 1, XK plus 2, XK plus 3 and so on is going to remain the same, is that fine. Right? So, if this
happens for all the subsequent time, steps you have reached the same distribution. So, let's put this in
context, we had assumed that T was the same, across all the time steps. But the Meuse were not the same
for all the time steps, they were different, we were computing them, as mu 0, mu 1, mu 2and so on. But
now we are saying that if at a certain time step the above condition holds and from that time step on
words, even the Mews become the same right so for all J greater than equal to that time step, your mu is
going to be the same which is PI. And pi is then call the stationary distribution of the Markov chain.
Okay? Again some definitions, I’m not saying why this would happen or will this happen and so on,
under what conditions this can happen? All that we will see later. But if it this happens then this is what it
would mean. Okay and now you can see that, X T, XT plus 1, XT plus 2 all these random variables, which
are at time step greater than T, actually greater than equal to T, follow the same distribution, which is PI.
So, instead of MU I am calling that,’ Stationary Distribution’, as pi. Okay? And now if I think of samples
being drawn. Right? So, if I’m looking at samples from time step T. So, remember that, at time step T, the
random variable X T can take all of these stories to n possible values. But it can take these values not
uniformly,  but  according  to  a  distribution,  which  is  this  mu  T is  the  distribution,  which  is  pi  is  a



distribution. Right? Again at time step T plus 1 it can take all of these to raise to N values, but according
to this distribution pi. So, now because all of these time steps have the same distribution, you can think of
these samples, X T, small X T, small XT plus 1, small XT plus 2 and so on, all of them coming from the
same distribution, which is pi, is that clear, does that make sense, how many of you are clear with this? I
see a blank Nikita, you didn’t get it let's call it T for now. So, so the key thing to note here, is once you
read the stationary distribution, after that even though it seems that you are having a different random
variable at every time step, you are essentially drawing from the same distribution, all  these random
variables come from the same distribution, all these samples come from the same distribution. Okay?
That's a crucial property, I'm going to turn back, to way. Okay? 
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So, now this is the important take away from here, if we run a Markov chain, for a large number of time
steps, such that it reaches its stationary distribution, from that time step onwards, all these samples come
from the same distribution. And why do we care about this what’s the spoiler alert here, one of the goals
that we had was, sample from that intractable distribution. Now whatever you have learned about Markov
chains, can you give me the next part of the story right can you tell me where will head eventually, we
will try to set up a Markov chain such that, such that it’s stationary distribution is, is what is the required
distribution? What is the distribution that we wanted to sample from, P of X. So, if you can set up a
Markov chain, such that it's stationary distribution is P of X then, if you run the Markov chain for a large
number of stem steps, we'll know that it will  reach the stationary distribution and once that happens,
whatever samples are coming, they are as if they were drawn from this P of X, even though we can
actually not compute P of X. Right? Because there are a lot of ifs here and we look at all of these ifs one



by one, but that's the story that we are headed towards. Right? And that's why this setup of Marko chains.
Okay? And what do we mean by running a Markov step for a large number of steps, a Markov chain for a
large number of time steps, what does it mean? It means that it's starting from time step zero, well you
will draw a sample according to the distribution mu naught, then at time sample time step one, you will
draw a sample according to this distribution, at time step two you will draw a sample according to this
distribution and you will  continue doing this,  at  some point  you will  of  course  reach the stationary
distribution.  And  from  there  on  if  you  continue  drawing  samples  then  you'll  get  samples  from the
stationary distribution PI. So, this is what I mean by running the Markov chain for a large number of time
steps, keep drawing samples from the chain, at every time step according to the relevant distribution and
what's that relevant distribution, it’s either mu naught or mu 1 or mu 2 or mu 3and so on. I'm ignoring all
the computational intractability of mu 1 mu2 and so on. But we'll try to simplify it as we go along. Right?
But that's what I mean by running a Markov chain for a large number of time steps. Okay? 
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Is it always easy to draw these samples so I very conveniently written that I will draw X 1 from this
distribution, is it always easy to draw these samples, when in doubt always say no. Right? I guess give
you an example that this mu 1requires,  a 2 n cross 2 raise to n cross2 raise to n cross 2 raise to n
multiplication. Right? Mu 1 is mu naught into T. So, if I want to compute the distribution mu 1 and then
sample from that distribution, I have to do this, inefficient matrix multiplication. Right? So, the answer
it's not always easy, but we’ll have to focus on things, which are easy. So, that we reach our goal and the
reason it's not easy is that mu K the dimension of MU K is 2 raised to n, which means that we need to



compute all these2 raise to n values and then draw according, to that distribution which is not going to be
easy. Now when you have these large number of parameters, what can you do to reduce the number of
parameters? You have a distribution, which has a large number of parameters, it's a joint distribution and
you  want  to  reduce  the  number  of  parameters  of  the  distribution,  what  will  you do?  Factorization,
factorization depends on independent solutions did, we make any independence assumptions. What are
we talking about. Okay? That's not a wrong answer, but bigger picture what are we talking about? RBMS.
Okay? Can we make any assumptions there, independence assumptions, no we made some assumptions
there. Right? So, that's a missing piece of the story that we'll get to. Okay? So, we need to somehow be
able to compute these joint distributions efficiently and at some point we'll rely on this factorization that
we'll have. Okay? Okay?
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 So, that ends the first module and we’ll quickly summarize, what we have done so, far we have this
discrete  space,  discrete  time,  time  homogeneous  Markov  chain,  we  have  also  defined  the  starting
distribution, mu zero the transition matrix P and the stationary distribution, PI all this is fine, why do we
care about Markov chains and their properties, this is not clear, so, far how does this description tie back
to our goals,  even this is  not  clear. So,  first  we will  see an intuitive explanation for why all  this  is
required. Right? And then we will get into a more formal discussion and then actually make it useful.
Okay?


