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So I’ll just quickly recap what we’ve been discussing it, so we’ve been talking about graphical 
modules both directed and undirected, and driven by this primary goal that we are interested in 
joint distributions of a large number of random variables, and we’re just considering the 
discrete case, and even in the discrete case we see that this is interactable because you end up 
with exponential number of parameters in your distribution, and it’s impossible to specify those.

So the basic idea that we have been going towards is that given this large distribution, how do 
you factorize into small factors which we can deal with, and as you factorize a graph, as a 
factorize a distribution properly, what will happen is the number of parameters that you need to 
learn to fully specify the distribution is going to decrease, yeah yeah so we want to factorize it 
and this factorization essentially reduces the number of parameters that we have in the joint 
distribution, and that’s what our goal has been, and then we saw that graph is a good way of 
representing this, and the nodes in the graph essentially are associated or with each node in the 
graph we have a association, associated conditional probability distribution in the directed case,
and these conditional probable distributions are the factors in our graph, right.



And we also saw for some twelve examples how the number of parameters drastically decreases
for these conditional parameters or conditional probability distributions as compared to 
specifying the full joint distribution.

And not only that it’s also more compact, it’s more modular, if you want to add new variables it 
becomes easier, and it’s also more attractable computationally less storage statistically, lesser 
amount of data required because you have to learn lesser number of parameters and cognitively 
if you were to ask human to give you values for some of these tables, okay can you at least tell 
me what is the priority of salinity given pressure that is something that expert could probably 
tell you, he just has to give you these four values and that’s easy and more attractable as asking 
him or her to specify the full joint distribution, I mean that’s what our goal is we are always 
interested in reducing the number of parameters so that our learning eventually becomes easier.

So far for all our discussion we have assume that someone is going to give us this factors, but 
eventually we’ll head to a state where we’ll try to learn these factors, okay.

And from the directed case we move on to the undirected case, because we came up with a very
simple example and where we saw that having directions does not make sense, because there is 
no hierarchy in some cases and it’s like both the factors or both the random variables that you 
are considering interact with each other, rather than depend on each other, right, I mean they do 
depend on each other but they dependence is symmetric instances, right, it’s like an interaction 
both are equal contributors, and that’s what happened in the study group example.

And from there we came up to undirected graphical models and where we argued that the 
factors in the undirected graphical models should correspond to these maximal cliques, okay. 
And that was not sacrosanct, you could also have cliques instead of maximal cliques, but it just 
that maximal cliques again gives you a minimum possible set of parameters and it captures 
what you actually want to capture, you want to capture the interactions between all elements of 
the study group, so why not you just one clique to represent that study group, okay.

So that was the factorizations on the left hand side you see the factorization for the Bayesian 
network which was factors were conditional probability distribution. On the right hand side you
also see a factorization with the difference that the factors here are not probability distribution, 
they are just known as clique potentials, these did not take values between 0 to 1, these could be
arbitrary things then we actually saw some examples of these arbitrary factor values, I just 
probably go to that quickly if it’s nearby, it’s not nearby, not nearby yeah something like this 
right, so it looks, 
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the table actually looks very much similar to the probability distribution except that it’s not a 
probability distribution, it’s just some values which capture the affinity between different value,
different possible assignments of the random variable, so 0 0 is more likely as compared to 1 1 
or 0 1 or 1 0, that’s what this table essentially captures, right.

And again I repeat so far we have assume that someone has given us these tables and we are 
talking about things that once these tables are given, what are the kinds of reasoning that we 
could do, so we saw some reasoning’s like causal reasoning, evidential reasoning, explaining 
away and so on right, and the case of the directed graph at once, right.

And coming back to the undirected case, even though these factors are not probability 
distributions, they are not too worried about it that because we know that given any kind of real 
numbered values, we can always do this normalization so that the resulting quantity ends up 
being a probability distribution for that the values lie between 0 to 1, right, and that actually is 
one concern that we’ll have to deal with going forward, that this partitioning function or the 
value Z which make sure that these factors eventually give us a probability distribution that is 
interactable, because it has to sum over all possible values of all the random variables, right, 
that’s what Z tells us, it’s over the entire universal set, it gives you the assignments to all 
possibilities in the universal set, and that’s the same as, it’s just the fancy we’re saying what we 
already know right, we always divided by all possible outcomes in the set, that’s what 
probability tells us right, your interest, events of interest divided by all possible events at the 
center, and that’s what Z actually does.

And those number of outcomes are very very large they are exponentially actually, right, 
because we need to consider all possible assignments to all these values which even in the 
binary cases do rise to them, okay, so this is Z is going to be a problem going forward and at 
some point we will have to deal with that, okay.



So that’s the summary of what we did before the summer vacation, and now we’ll continue 
from that point, and we are again interested in this question of what are the independencies 
encoded by a Markov network, so let U be a set of all the random variables in our joint 
distribution right, so X1 to XN is that set U.

And now let X, Y, Z they’re some overloading of variables, now these X is different from the 
X1 to XN that we’ve been considering so far, let X, Y, Z be some distinct subsets of U right, so 
say the first K random variables is X, the next K random variables is Y, and the remaining 
random variables are there, some distinct subsets so it doesn’t matter in what order you have 
taken or whatever, okay.
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Now a distribution P over these random variables would imply that X is independent of Y given
Z, if and only if we can write the joint distribution as a product of the following factors. 

So what is so unique about these factors? X and Y do not appear in the same factor, right, and 
they do not appear in the same factor that means they are not connected, they are not part of any
clique, right.

And X and Z, and Y and Z can appear in the same factor, that’s fine, so given Z, X is 
independent of Y, that’s what this means, so if that condition if the distribution can be factorize 
like this, then it means that X is independent of Y given Z, right, this is again define the 
semantics of a Markov network just as we had define the semantics of a Bayesian network, 
okay.
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So let us see this in the contest of a original example right, I mean here this doesn’t hold right, 
what was the independence in this example? Do you remember the independences? A is 
independent of C given B,D and B is independent of D given A,C. So based on the discussion 
that we just had, 
(Refer Slide Time: 07:55)

this joint distribution should have factorized in a particular way, is it factorizing in that way? So
I told you a rule for when is X independent of Y given Z, and remember the X, Y and Z are sets 
of random variables, they did not be individual random variables, right.



So according to that rule what should the factors have been actually? What is X in the first 
case? What is Y? And what is Z? B,D so what kind of factors should we actually would have? 
Phi(X,Z) and phi(C,Z) right, or rather Y,Z, so this is X, this is Z, this is Y, this is Z, do we have 
factors of that form? 
(Refer Slide Time: 09:00)

You were allowed to be a bit creative do we have factors of that form? Okay, we just need to 
rearrange these terms right, I mean this let’s see, we can write it as these two terms together is a 
larger factor depending on B,A,C, 
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and these two terms together is a larger factor depending on D,A,C, right.

So now this is X, this is Z, this is Y, this is Z, so we have the condition that X is independent of 
Y given Z, right, it’s just a matter of rearranging these factors, and nothing changes, right, you 
still can have the modular factors where you have a phi 1 and phi 2 which operate only on AB 
and BC, it’s just that using that you can always compute phi 5, not a good choice but okay, is 
that fine? Does that make sense? Okay, so that’s the rule for Markov networks, 
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and it’s also you could again do a different kind of rearrangement to get the other independence 
which was A independent of C given B, D, just need to arrange the factors a bit differently, 
okay. So if you could factorize the joint distribution as factors of the form phi XZ, phi YZ, then 
X is independent of Y given Z, okay.
(Refer Slide Time: 10:24)

Now the next thing that we are going to define just as we had defined for a Bayesian network, 
we had define parents of a node. In the case of Markov network, we are going to define 
something known as a Markov Blanket, which is nothing but the collection of all the neighbors 
of X, right, so for any given Markov network, for a given random variable X belonging to this 
network, we can define the Markov Blanket of this X as all the neighbors of X and H, right, and
this is illustrated in the diagram, okay.

Now what to consider as a neighbor is again something up to you, so can I consider these two 
be to be neighbors? If I want I can, right, it’s again a modeling choice which I make, say if I 
were talking about these things as pixels and image, I would probably decide to choose all of 
these as neighbors, right, but if it’s some other application maybe where these diagonal 
neighbors don’t make sense, so I’ll just connect the horizontal and vertical neighbors, so that’s 
completely up to me, but once I define these neighbors, and this is known as the Markov 
Blanket of X.

So now just as for the Bayesian networks we had these rule that a node is independent of all 
non-descendants given the parents, and now I have given you some kind of equalizer between 
parents and a Markov Blanket, can you tell me a rule for Markov networks? Is the analogy 
clear? How many of you get what I said just now, please raise your hands? Yes, so you had a 
question. No, you have to draw an H, okay.

So what I said is that I just started this discussion by saying that just as you had parents in the 
case of Bayesian networks, in the case of Markov networks I’m defining this Markov blanket, 



right, which is essentially everything that covers a given node, right, I’ve a case of Bayesian 
networks you had this rule that given the parents, the load is independent of all its non-
descendants, right. 

Remember in the case of Markov networks non-descendants does not make sense because there
is no concept of descendants at all, okay.

So again given in Bayesian networks you had this rule that given the parents the load is 
independent of all its non-descendants, the parents analogy in the case of Markov networks is 
the Markov blanket. 

So now can you give me a rule for the Markov networks? Given the Markov blanket node is 
independent of all other words, right, okay, is that make sensitive sense, right so given, 
(Refer Slide Time: 12:59)

so X is independent of everything from the universal set except of course X itself and the 
Markov Blanket, given the Markov Blanket, does that make sense? Okay and it should see an 
analogy of this with the rule that we had for the Bayesian networks, okay, so this is what we 
had for the Bayesian network, 
(Refer Slide Time: 13:17)



these were the local independencies again okay, we have fixed this.

Local independencies in the Bayesian network and these are the local independencies in the 
Markov network, this already fixed you don’t need to note this, okay, is that fine? 
(Refer Slide Time: 13:32)

So parents, neighbors, non-descendants, non-neighbors, was that fine? Okay, so that’s the rule 
for Markov network, so this is I mean as I was explaining someone right, so we are in the 
course of deep learning, for deep learning we need some, we need to cover some topic known 



as RBM’s, for RBM’s we needed this entire background of graphical models which is a separate
course in itself.

What I’ve tried to do is whatever is the minimal stick part that I need to take through this jungle
I have taken and from here we’ll eventually try to reach RBM’s, 
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so that I’m trying to impress upon you is that graphical models even if you read one chapter 
from the book it is perhaps much, much more than what I have covered as background of 
directed models, or directed graphical models and directed graphical models and so on right, 
but my intention is not to do a course in graphical models, I’ve just done the minimal stick 
concepts that we need to eventually reach RBM’s and from there reach auto and kudos and 
perhaps auto regressive models, right, so that’s what we are aiming for.

And some minimal stick part I have taken already, and we’ll continue probably exploring some 
more short parts in this jungle, and then eventually get to RBM’s, hopefully by tomorrow or 
day after tomorrow, okay. So with that I’ll just go to the next lecture. 
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