
Information Security-5-Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
Module 1
Lecture 6

Skip Instruction-Demo

So hello and welcome to this demonstration in the course for Secure System Engineering.

(Refer Slide Time: 00:21)

So in this demo will be showing how a stack can be manipulated to actually skip an

instruction.so this demo and the source code is actually present in a virtual (())(00:32) chip and

actually download so you should have done it with the previous demos and in the week 0 and

week 1. So lets actually start of this demo. So the demo is present in this particular directory (())

(00:50) codes module 1 and it corresponds to this C code skip instruction so lets open this

particular C code and open it over here and what we see is two functions, one is a function which

takes three parameters a, b and c and it does some simple manipulations on a above her.

Next what we also see is the main function where you have a local variable x which has a value

zero then there is an invocationary function with parameters 1, 2 and 3 and then there is a

statement for x equal to 1 and then there is a printf value of x is %d, one thing you would

actually like to do at this time is to guess what the output of this particular program is. So let us

actually look at it, so one would guess that since x is equal to one over here what would likely be

printed on the screen is that the value of x is 1.

So let’s see what actually happens, as before we (())(2:03) clean and then make and we get the

executable skip instruction.now when we run this particular program what we see is that we a

print a value of x is zero infact this entire thing of x equal to 1 has not been executed at all rather

what has happened to x is that it has somehow manage to obtain a value of zero which

corresponds to this particular statement. So this is ofcourse quite quantative and not what is

expected and in order to understand what actually is happening we would have to go into this

particular function. So the way we will understand this function is through GDB,

(Refer Slide Time: 03:06)

So let’s run for this so we would run GDB dot slash a skip instruction and as we seen before we

can list the various contents of the program and we could also set a break point over here say at

line number 14, so line number 14 corresponds to the call to this particular function. Now when

we run it as we have seen in the previous video a program will execute starting from main and

stop due to the break point in line number 14 so we see that the break point has been hit and the

execution has stopped just before the function has been envoped.

Now we could actually look at the value of x and rightly enough the value of x will be zero so

we could do something like info locals and this has value of x equal to zero this is because x has

been initialized in line number 13 to be zero. Now let a single step through this program and see

what is actually happening in function. So first of all before we invoke the next line let us print

what are the contents of the various important registers. So as we seen before the contents of the

instruction pointer is 8048449 which is essentially the location where call to function is present

we have the stack pointer and a base pointer which is pointing to the frame corresponding to the

main function.

(Refer Slide Time: 04:51)

Now if I do a single instruction and execute a single instruction corresponding to this we could

see what happens, at this particular point we are pushing the various arguments on the stack and

this we have seen before so we don’t have to spend too much time over here and eventually we

would see that the function gets invoked due to this line and the execution has been transferred to

the function.

(Refer Slide Time: 05:25)

So let us (())(5:24) the function and at this point we would also look at the various registers that

is the (EIT) ESP and the EBP so what we see here is that we have a stack pointer which is at

FFFF CF20 ok and the base pointer is at FFFF CF48 now since this is still at the first line of

function the base pointer has not been changed at yet and that new frame corresponding to this

function has not been created as yet. So let us single step through a few more instructions let us

say the single step through four instructions and look at the contents of the stack.

So the content of the stack as we have seen previously or can be obtained as follows, xx x32x

dollar ESP so one can cannot that the written address which should be pushed onto the stack if

the call function in name is this so soon after the call gets invoked the next instruction has the

address 08048454 now if you actually look at the contents of the stack we see that the return

address what we just mentioned is at this location, this has the address FFFF CF1C plus 4 that is

FFFF CF20 so in this particular function we have two locals we have pointer to an integer which

is known as RET and a buffer which is of 16 characters .

So as we have seen in the previous video we could print the address of this two local variables

and what as we would expect this two local variables would be present in the newly formed

stacks in for this function.

(Refer Slide Time: 08:13)

So printing the content of register can be done as follows P slash x and for sum threat which is

FFFF CF18so this would be the contents of RET and the contents of buffer is as follows, FFFF

CF08 now what you see in that the contents of the buffer starts at FFFF CF08 and extends for 16

bytes.

So anything beyond this 16 bytes would lead to a buffer overflow. Now what we do want over

here is that we want to over flow the buffer in such as way so that the return address is modified.

Now we would take our calculator we can do this as follows set it to the hexadecimal mode and

we would see what is the distance from the buffer to where the return address is stored so we

know that the return address is present at the location FFFF CF20 and the buffer is present at this

location FFFF CF08 so you subtract this FFFF CF08 so we see that there is an offset of 18 bytes

and this 18 is in hexadecimal which corresponds to 24 bytes offset from the start of the buffer to

the return address.

Now what we do in this particular line over here is that at this location buffer plus 24 we obtain a

pointer and this particular pointer is stored in this local variable return. So essentially at this

particular point what we obtain is that return points to where the return address is stored so we

can see this happening by single stepping and looking at the contents of RET so RET is present

at FFFF CF18 so we see that RET has a value of zero right now we will execute a single

instruction in which case we have actually executed this particular instruction and changed the

value of RET so that it points to the where the return address is present.

So let us now print the contents of the return so x slash x with dumped memory corresponding to

this location FFFF CF18 and as we have seen before this particular memory location corresponds

to where RET is stored. Now what we see over here is RET has a value FFFF CF20 and this

corresponds to this location and this actually is where the return address is stored. Now the next

line is very crucial the next line of function increments the value of RET by 8 bytes. Now to

understand what this means we would first single step execute a single instruction and see that

the contents of the return address has been modified and incremented by 8 bytes.

So not yet let me single instruction ok, so we had to specify four instructions to be executed

because this single statement in C corresponds to four instructions in the assembly code so at this

point you see that this line of C has completed executing and we would also look at the start and

note that the written address has been modified so the return address used to be 08048454 and

what it has changed to is 0804845C.

(Refer Slide Time: 13:23)

To understand what is the implication of this change we look at the (())(13:22) of many ok the

actual return address is 08048454 and what we have actually changed this to is 08048454C and

essentially what it is doing is that it is actually skipping this add instruction and landing

somewhere here.

So essentially what would happen when this function completes execution is that this value

0804845C gets taken from the stack and placed into the instruction pointer and execution of the

program will continue based on this particular value. So let us single step through this and see

that it has come back to main and we would note that the contents of the instruction pointer is

0804845C which essentially means that the add instruction which is specified here has been

skipped.

As a result what is happening with respect to the C code is that after a function is invoked the x

equal to 1 statement is getting skipped and we are directly going to the printf statement and since

this x equal to 1 statement is not being executed the value of x continues to be zero and as a

result when we actually continue the execution of this program using the C command which

stands for continue to execute then we get that the value of x is zero.

So in this particular video we seen one example of how we could manipulate execution of a

program in such a way so that an instruction can be skipped. In the next demonstration what we

will see is how we could do something which is more dangerous, we would see how we could

actually inject code into a program and force a payload to the executed in the demo that we will

look at next. We will take a shell code and we will inject the shell code into a dummy program

and then force this shell code to execute, thank you.

