Information Security - S - Secure Systems Engineering
Professor Chester Rebeiro
Indian Institute of Technology, Madras
'Demo- Cache-timing based Covert Channel - Part 2'

(Refer Slide Time: 0:16)

1ty 4)) 2:03PM 2 ambika ¥

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1
ambikaemadhava: /scratch/ambika/courses/SSE/covert_channel/protol$ vim ref]

T3 @) 203PM 2 ambika it

=
| 3
3
5
2

ambika@madhava: /scratch/amblika/courses/SSE/covert_channel/protoi

: Gnanambikai

Specific to my system's configurations
PGSIZE:4KB ,

DCache associativity:8 ,

Cache Block size:648 ,

No of Dcache sets : 64,

Dcache size : 32kB

You will have to tweak the code a bit, if your system has different configuratio|

ns than above.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
include <time.h>

BE= T EIEL D

#tdefine THRESHOLD 1750 /* Threshold above which, timing measurement
s are ignored */
“receiver.c” 291L, 12005C

13 4)) 203PM 2 ambika fif

/7 time an access to the BF
start = rdtse();

ned int*)BE_O = i;
ed int*)BE_1 = i+1;
igned int*)BE_2 = i+2;
NtYBE_3 = 143;

cache set

4 .
4 int*)BE_S
4 int*)BE_6

(unsigned int)BE_7
d = rdtsc();

(end - start <= THRESKOLD) BE_freq[(end - start)]++;

// time an access to the A0 cache set

start = rdtsc();

(unsigned int)A0_O = i;

(unsigned int)A0_1 = is1;

(unsigned int)A0_2 = i+2;

signed int*)A0_3

igned int*)A0_4

igned int*)A0_S

signed int*)A0_6
unsigned int*)A0_7

end = rdtsc()

(end - start <= THRESHOLD) AO freql(end - start)]++;

// time an access to the AD cache set
start = rdtsc();

1signed int*)A1 0 = i;
igned int*)A1_1 = is1;
1signed int*)A1_2
signed int*)A1_3
signed int*)A1_4

Dy

225,4-25

13 1) 203PM 2 ambika i

memset (AO_freq,

memset(A1_freq, 0, (A1_freq)
memset (BO_freq, 0, (BO_freq)):
memset (BE_freq, 0, (BE_freq)):

(i=0; i < TIME_PERIOD; i++)

_asm__ __volatile_|
77 time an access to
start = PHES(H
(Unsigned Aak)
(linsigned ing)sc
(Unsigned int)
(linsigned int)

the BO cache set

EI[= |

(UnSigned HAt)
= rdtsc();

Bl

(end - start <= THRESHOLD) BO_freq[(end - start)]++;

// time an access to the BE cache set
start = rdtsc();

(unsigned int)BE_O
int*)BE_1
nt*)BE_2
int*)BE_3
nt*)BE_4
\signed int*)BE_S
\signed int*)BE_6
(unsigned int)BE_7

184,32-53

1y 4) 2:04PM 2 ambika {if

#if defined(__i386__)
tatic __inline__ uns

gned long long rdtsc(void)

unsigned long long int x;

_asm__ ile("xorl ¥%eax,%%eax\n cpuid \n" teax", "%ebx" ecx", "%edx"); // flush pipeline
i s il ile (".byte 0x0f, 0x31 " 00)
__asm__ volatile("xorl %%eax,%%eax\n cpuid \n %eax", "X%ebx", "%ecx", "%edx"); // flush pipeline

#elif defined(__x86_64__)
static __inline__ unsigned long long rdtsc(void)

unsigned hi, lo;

_asm__ __volatile__ ("xorl %Xeax,%%eax\n cpuid \n" ::: "%eax", "%ebx", "Xecx", "%edx"); // flush pipeline
_asm__ __volatile__ ("fldtsc” : "=a"(lo), "=d"(hi));
_asm__ __volatile__ %%eax, ¥eax\n cpuid \n" "%eax", "%ebx", "Xecx", "%edx"): // flush pipeline

((unsigned long long)lo)|(((unsigned long long)hi)<<32);

#endif

/* declare an array as large as the L1 D cache; align it to an
offset of 64 bytes to make things simple */
unsigned int send_array[DCACHE_SIZE / INT_SIZE] _attribute__ ((aligned(64))):

/*
* main takes 4 command line parameters. Each parameter represents a cache set (0 - 63) and must
* not overlap. The first two parameters are used for sending bits (0 or 1). The second two

* parameters are used for controlling the communication (it takes values even or odd)

!

main(int c,char *argv(])

68,25-32

Okay, so let us now look at the receiver part of the code, so as we see the receiver part is very
similar to that of the centre, we still have these memory accesses which are done but the
major difference here is that the block of memory accesses is actually timed, so the timing is
done by the function call rdtsc, so this rdtsc function returns what is known as the time stamp
prior to actually executing these instructions we measure the timestamp and also at the end of

these instruction executions.

Therefore the end minus start would give you the time taken to execute these instructions,
rdtsc function are received over here uses something known as the rdtsc instruction which is
supported by all Intel platforms or Intel processors. So this instruction essentially reads a
timestamp counter, so all Intel machines maintain a counter, it is a 128 bit counter which
starts at O at the time of reset and implements at every clock pulse, so the rdtsc instruction
then reads the timestamp counter at that particular incident. So we have 2 versions of this
rdtsc function other one is for 32-bit and the other is for 64-bit and if you are using trying to
actually replicated this particular cover channel on your own machine, you could suitably

enable one of these 2 functions.

(Refer Slide Time: 2:01)

13 4)) 206PM 2 ambika if

o ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1
int counter = -1;
m

memset(A0_freq,
memset(Al_freq, (A1_freq));
memset(BO_freq, (BO_freq));
memset(BE_freq, 0, (BE_freq)):

(A0_freq));

ooco

SELKE

nt a0_max=0 , al_max=0;
nt bo_max=0 , be_max=0;

(i=0; i < TIME_PERIOD; i++)

3= |)

B

gned int*)BO_7 = i+

*(unsigne;
rdtsc();

end
(end - start <= THI&SHOLD) BO_freq[(end - start)]++;

// time an access to the BE cache set

187,24-45

erminal 1y 4) 2:06PM 2 ambika

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1

Specific to my system's configurations
PGSI1ZE:aKB |,

DCache associativity:s ,

Cache Block size:64B ,

No of Dcache sets : 64,

Dcache size : 32kB

You will have to tweak the code a bit, if your system has different configurations than above.

*/

BXON e

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

2| E

#define HRESNOLD 1750 /* Threshold above which, timing measurements are ignored */

#define TIME_PERIOD (1<<24) /* the number of iterations to probe a single bit */

#define CONTENTION_THRESHOLD 17 /* If the timing difference between two sets falls less than this, we assume that no|
thing has been sent */

/* Cache parameters */

BLOCK_OFFSET_BITS 6 /* cache address offset bits */

SET_BITS 6 /* set address bits */

ASSOC_BITS 3 /* lowest 3 bits of the tag address decides the associativity in L1 cache */
#tdefine TOT_BITS (BLOCK_OFFSET_BITS + SET_BITS + ASSOC_BITS)

#tdefine DCACHE_SIZE 32768
#define INT_SIZE 4

/* Enable this for verbose outputs */
//#tdefine __DEBUG__

#ifdef _ DEBUG

1y 4) 2:07PM 2 ambika

(unsigned Ant)A1_1 = is1;
(unsigned int)A1_2
(unsigned int)A1_3 =
(unsigned int)A1_4
(unsigned int)A1_S
(unsigned int)A1_6
> nt*)AI_7
5

(end - start <= THRESHOLD) A1_freq[(end - start)]++;

B

/* so far we have obtained four distributions. A0_freq; A1_freq; BO_freq; B1_freq
Each distribution has the frequency with which a given clock cycle is observed.
We next determine the peak in each distribution -- this indicates the timing that occured most often */

;i<THRESHOLD; i++)
(A0_freq[ao_max] < A0_freq(i])
a0_max =

; 1 <THRESHOLD; i++)
(A1_freqal_max] < A1_freqri])
al_max = i

<THRESHOLD; i++)
(BO_freqlbo_max] < BO_freq[il)
bo_max = i

$i<THRESHOLD; i++)
(BE_freq[be_max] < BE_freq[il)
be_max =

PRINT4("\t\t\tReceiver: %d %d d=%d\t \n", a0_max, al_max, a0_max - al_max);

222,15-36

Ty 4) 2:08PM 2 ambika

(i=0;i<THRESHOLD; i++)
(BO_freq(bo_max] < BO_freq[il)
bo_max = i;

(1=0; 1<THRESHOLD;i++)
(BE_freq[be_max] < BE_freq[i])
be_max = i;
PRINT4("\t\t\tReceiver
PRINT4("\t\t\tReceiver

%d %d d
%d %d d

", a0_max, al_max, a0_max - al_max);
. bo_max, be_max, bo_max - be_max);

/* This if condition determines if the sender has started. If the sender has
not yet started, there will be little difference (< CONTENTION_THRESHOLD) between
the be_max and bo_max as well as a0_max and al_max. We just continue in such a case. */
(!sender_started && (abs(be_max - bo_max) < CONTENTION_ THRESHOLD) &&
(abs(a0_max - al_max) < CONTENTION_THRESHOLD)){
PRINT("\t\t\t Sender not started (no contention detected)\n");

sender_started = 1;

/* extract if this is an even bit or odd bit */
b_bit = (be_max > bo_max)? 0: 1;

/* determine if a next bit has%nm\ received */
(prev_b_bit == b_bit){
PRINT("\t\t\t No change in b_bit\n");

prev_b_bit = b_bit;
counter++;

X

/* extract the bit sent (either 0 or 1) */
a_bit = (al_max > a0_max)? 1: 0;

/* print it out */

13 4)) 209PM 2 ambika fif

® ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1
We next determine the peak in each distribution -- this indicates the timing that occured most often */

(1=0; i <THRESHOLD; i++)
(A0_freq[a0_max] < AO_freq[i])
a0_max = i;

(i=0; i<THRESHOLD;i++)
(A1_freq[al_max] < A1_freq[il)
al_max = i;

SELKE

(1=0; i<THRESHOLD; i++)
(BO_freq[bo_max] < BO_freq(i])
bo_max = i;

(10; i<THRESHOLD; i++)
(BE_freg[be_max] < BE_freq[i])
be_max = i;

3=)]

PRINT4("\t\t\tReceiffer: %d %d d=%d\t \n", a0_max, al_max, a0_max - al_max);
PRINT4("\t\t\tReceiver: %d %d d=%d\t \n", bo_max, be_max, bo_max - be_max):

nes if the sender has started. If the sender has
not yet started, ther e little difference (< CONTENTION THRESHOLD) between
the be_max and bo_max 1 as a0_max and al_max. We just continue in such a case. */
(Isender_started & (abs(be max - bo_max) < CONTENTION THRESHOLD) &&
(abs(a0_max - al_max) < CONTENTION_THRESHOLD)){
PRINT("\t\t\t Sender not started (no contention detected)\n");

/* This if condition

B[

¥

sender_started = 1;

/* extract if this is an even bit or odd bit */
b_bit = (be_max > bo_max)? 0: 1;

/* determine if a next bit has been received */
(prev_b_bit == b_bit){
PRINT("\t\t\t No change in b_bit\n");

258,22-36 94%

So that being said the next thing we actually look at is there is something known as a
threshold which is also defined, so the end minus start gives you the time required to execute
these 8 instructions and we see that the time recorded for this set of instructions may be
extremely noisy, the noise may come due to certain other aspects which are going on in the
processor for example a page fault, interrupts and so on and these needs to be filtered out, so
the threshold value should be selected on per processor basis or per system basis and it does

not very accurate.

In this code we have hash design the threshold to a value of 1750, so this value should be
good enough to filter out most of the noise due to interrupts and other aspects like context
and so on but yet the big large enough to permit or to be able to distinguish between cache
hits and cache misses, so for any of these timing which is less than the threshold we maintain
something known as a frequency distribution table and identify how often a particular time is
observed. So at the end of this particular iteration that is the time period and recollect that the
time period is set to 2 power 24, we use these frequency distribution table to identify whether

a cache hit or cache miss is observed.

Now a cache miss would imply that the sender has actually sent something through that
particular port, so it would mean that the sender has actually loaded something in that
corresponding set and therefore has evicted the receiver data from that set and therefore when
the receiver is actually accessing through that set it would result in a cache miss and memory
access would require to go to a lower level cache like the L2 LLC or the DRAM to complete

the memory access.

So this would typically take longer which we have timed and this timing would actually show
up in the frequency distribution, so in this way observing the various frequency distribution
for the various sets 10, 20, 30 and 40 the receiver would be able to (())(4:32) whatever has
been transmitted by the sender, so it would then be able to identify Os and 1s it would be able

to identify whether it was odd bit or even bit that the sender had actually transmitted.

So in this way what we have seen is 2 independent processes a sender and a receiver being
able to communicate with each other through this cover channel this very indirect channel
and being able to break all the security that is achieved by this underlined platform, such
cover channels may not be restricted only to cache but other aspects or other processor and
system level features such as in the file system page falls another things like key strokes and

so on may be also used as a source of cover channel.

