Information Security - S - Secure Systems Engineering
Professor Chester Rebeiro
Indian Institute of Technology, Madras
'Demo- Cache-timing based Covert Channel - Part 1'
Hello and welcome to this demonstration in the course for secure systems engineering. In this
particular demonstration we will look at cover channels, we have already seen the theory
about cover channels and how they can be established through the cache and in this

demonstration we will actually look at creating such a cover channel and how we could

actually transfer information from one process to another.

(Refer Slide Time: 0:45)

‘ 3 @) 12:41PM 2 ambika ¥

adhava: /scratch/ambika/cour ses/SSE/cover t_channel/proto1$ | |

amblka@madhava: /scra((h/amblka"k'.ourseslssE/covert_channel/protm
[ambikaemadhava: /scratch/ambika/courses/SSE/covert_channel/protols cat /prf]

EEFELD

[13 4) 12:43PM 2 ambika {i}

: GenuineIntel
: 6

: 60
: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
8

: Oxla

initial apicid :

fpu

fpu_exception

cpuid level

v

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgh rdt
scp Im constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ap
er fmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma
cx16 xtpr pdcm pcid sse4_1 ssed_2 x2apic movbe popcnt tsc_deadline_timer aes xsa
ve avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow v|
nmi flexpriority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpc
id rtm

bogomips : 6783.77

clflush size i 64

cache_alignme: i 64

address sizes : 39 bits physical, 48 bits virtual

[power management:

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1s ||

[1y 4) 12:43PM 2 ambika it

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1
ambikaemadhava: /scratch/ambika/courses/SSE/covert_channel/protols clear

[ambikagmadhava: /scratch/ambika/courses/SSE/covert_channel/protol$ cat /proc/cpuil

t 0
: GenuineIntel
26

: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
=5

: oxla
: 3401.000
: 8192 KB
: 0

initial apicid

fpu : yes

fpu_exception : yes

cpuid level 218

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgh rdt|
scp Im constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ap
erfmperf eagerfpu pni pclmulqdq dtesé4 monitor ds_cpl vmx smx est tm2 ssse3 fma
cx16 xtpr pdcm pcid ssed_1 ssed_2 x2apic movbe popcnt tsc_deadline_timer aes xsa
ve avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow vi
nmi flexpriority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpc

: 6783.77
clflush size i 64

[13 4) 12:43PM 2 ambika {i}

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1
[anbikagmadhava: /scratch/anbika/ cour ses/SSE/ cover t_channel/proto1$ clear

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/protol$ cat /proc/cpui)
nfo
processor 10
vendor_id : GenuineIntel
cpu family 1 6
: 60
: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
3)

: Oxla
: 3401.000
: 8192 KB

initial apicid :
fpu : yes
fpu_exception : yes
13

: yes
: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

er fmper f eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma
cx16 xtpr pdcm pcid ssed_1 sse4_2 x2apic movbe popcnt tsc_deadline timer aes xsal
ve avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow v|
nmi flexpriority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpc
id rtm

bogomips : 6783.77

clflush size 64

[1y 4)) 12:43PM 2 ambika 1%

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1

scp Im constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ap|
er fmper f eagerfpu pni pclmulqdg dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma
cx16 xtpr pdcm pcid ssed_1 ssed 2 x2apic movbe popent tsc_deadline_timer aes xsa
ve avx f16¢ rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow v
nmi flexpriority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpc

: 6783.77

: 39 bits physical, 48 bits virtual
[power management:

processor ca
vendor_id : GenuineIntel
ENE)
1 60
: Intel(R) Core(TM) 17-4770 CPU @ 3.40GHz
3

: Oxla
© 800.000

initial apicid
fpu : yes
fpu_exception : yes
cpuid level : 13

wp s yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mea cmov
pat pse3s clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpeigh rdt

‘ 3y @) 12:44PM 2 ambika i

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1
: GenuineIntel
56
: 60
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
5 8
: ox1a
: 800.000
: 8192 K8
t o

8
33
:a

7

initial apicid : 7

fpu : yes
fpu_exception : yes
cpuid level 13

: yes

: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdt|
scp Im constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ap
erfmperf eagerfpu pni pclmulqdq dtesé4 monitor ds_cpl vmx smx est tm2 ssse3 fma
cx16 xtpr pdem peid sse4_1 sse4_2 x2apic movbe popent tsc_deadline_timer aes xsa
ve avx f1fc rdrand lahf_Im abm ida arat epb xsaveopt pln pts dtherm tpr_shadow v
nmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpc|

: 6783.77

: 64
: 39 bits physical, 48 bits virtual
power management :

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/protols |

[13 4)) 12:44PM 2 ambika {i}

ambika@madhava: /sys/devices/systemjcpu/cpud/cache

initial apicid

fpu yes
fpu_exception : yes
cpuid level 113
: yes

: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgh rdt|

scp Im constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ap

erfmperf eagerfpu pni pclmulqdq dtesé4 monitor ds_cpl vmx smx est tm2 ssse3 fma

cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popent tsc_deadline_timer aes xsa

ve avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow v

nmi flexpriority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpc

: 6783.77

: 39 bits physical, 48 bits virtual
power management :

ambikagmadhava: /scratch/ambika/cour ses/SSE/covert _channel/protol$ cd /sys/device,
s/system/cpu/cpu
cpu2/ cpud/ cpus/ cpufreq/
cpu3/ cpus/ cpu?/ cpuidle/
ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/protol$ cd /sys/device
s/system/cpu/cpuo/
driver/ node0/ thermal_throttle/
firmware_node/ power/ topology/
microcode/ subsystem/
lambika@madhava:/scratch/ambika/courses/SSE/covert_channel/protol$ cd /sys/device|
s/system/cpu/cpu0/cache/
ambika@madhava:/sys/devices/system/cpu/cpud/caches 1s
index1 ind inde

amiyika@madhava: /sys/devices/system/cpu/cpud/caches

[1y 4)) 12:47PM 2 ambika 1%

ambika@madhava: /sys/devices/system/cpu/cpu/cache/index0
dhava: /scratch/anbika/cour ses/SSE/covert_channel/protol$ cd /sys/devicel
pu/cpu
Cpu2/ cpud/ cpu6/ cpufreq/
cpu3/ cpus/ cpu?/ cpuidle/
ambikaémadhava: /scratch/ambika/courses/SSE/covert_channel/protol$ cd /sys/device

driver/ node0/ thermal_throttle/
firmware_node/ power/ topology/
microcode/ subsystem/
ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/protol$ cd /sys/device,
s/system/cpu/cpu0/cache/
ambika@madhava:/sys/devices/system/cpu/cpu0/caches s
ndex0 index1 index2 index
/sys/devices/system/cpu/cpud/caches cd index0
:/sys/devices/system/cpu/cpud/cache/index0$ 1s
size physical line partition size
shared_cpu_list type
shared_cpu_map ways_of_associativity
/sys/devices/system/cpu/cpud/cache/index0$ cat type
Data
ambikaemadhava: /sys/devices/system/cpu/cpud/cache/index0$ cat size

32K
ambikaemadhava: /sys/devices/system/cpu/cpu0/cache/index0s shared_cpu_list

0,4
ambikaemadhava: /sys/devices/system/cpu/cpu0/cache/index0$ ways_of_associatiy|
ity

8

ambikaemadhava: /sys/devices/system/cpu/cpu0/cache/index0$ number_of_sets
ambikaemadhava: /sys/devices/system/cpu/cpud/cache/index0$ coherency_line_
e

64
lambikaemadhava: /sys/devices/system/cpu/cpud/cache/indexos [|

So this particular sector may not be runnable from the virtual machine, although we will
actually provide the source code that can be downloaded and tried on your own machines. So
while setting up a cover channel using the cache memory the 1* thing to identify when we are
starting to design a cache-based cover channel or is to identify information about the
processor and also about the cache memory present in that processor, so the machine that
were using over here is a regular 17 machine from Intel and it is running an open to operating

system.

The 1* thing to note is details about this processor, so this processor is 4 cores processor and
these 4 cores there are 8 hyper threats, essentially per core as 2 hyper threats. If you want to
try this on your own system which is running open 2 you can run the commands cache slash
cat slash proc cpuinfo and it would list details of all the processor present in your system for
example over here since we have mentioned that this is 4 core machine, so each core is given
a particular core ID starting from 0, 1, 2 and 3, so the core ID for example over here is 3 and

as we scroll upwards we see other core IDs of 1 and 0 and so on.

The next thing we also mention that in this processor we had to hyper threads sharing the
same CPU core particularly what we see if we scroll up is that the processor number 0 and
the processor number 4 share the same CPU core, so we can verify this as follows. So this is
processor 0 and which is present in this on the core with an ID of 0. Now if you look at the

processor 4 so processor 4 is also on the same for core with the same core ID.

Similarly if you go through the other things and this particular machine you see that
processor 1 and processor 5 are sharing the same core essentially the core ID 1 and so on. In
order to create a cover channel between 2 processors what we would require is to identify 2
hyper threats which are running on the same core, so let us choose the core processors 0 and
processor 4, the next thing we need to know is the cache structure for this particular
processors, so this information can be obtained from the directory...sys devices CPU cache,

so this particular directory list all the cache memories that are accessible from the CPU 0.

So will go into index 0 and we will look at the type of cache which is present over here and
the type is D data which indicates that this particular cache represented at CPU 0 index 0 is a
data cache. It has a size of 32 kilobytes as seen over here and we can also get the information
about the other processes which are sharing this particular cache memory, so this can be
obtained from the file shared CPU list and we see that there are 2 processors, processor 0 and

processor 4 which are actually sharing this particular cache, so now if we want to build a

cache cover channel, we could have...and we want to build this cache cover channels

between 2 processes and shared information between these 2 processes.

What we would be able to do is we could run one process in the CPU 0 and one process in
CPU 4 and make use of the shared cache to exchange information. We can also obtain other
details about this particular cache memory for example the ways of associate key is as follow
so this is 8 way associative cache and the number of sets that are present is 64 okay and the
size of each cache line that is present is as follows, is also 64. Based on all of this information

we can next construct a typical address of such a cache.

(Refer Slide Time: 6:18)

i

—~——
6y}, Gbitg

So what we did mention was that this particular cache memory had a cache line size of 64
bits which would indicate that the lowest bits of the address, the lowest 6 bits of the address
comprises addressing within the cache line size which is of 6 bits. It also had 64 cache sets
and therefore in order to address 64 cache sets we need another 6 bits and therefore we have
set addressing which has like another 6 bits, these 2 actually give the offset with in a line and
these 6 bits provide the address for a particular set. So later on as we would see in the
programs we would require to no such information in order to build our cache base cover
channel. So now that we know about the cache structure and the processors within this
particular machine let us next try to find out how we could actually build a cache base cover

channel.

(Refer Slide Time: 7:39)

Sendery vy

)
\@lo”o/ ”

bt 32 1)

PesL20)

Condef) 30~0dd
Go—~even

So what we want to achieve is that we have 2 processes running on the system these
processors are called sender and receiver... and receiver and we assume that these 2
processors are completely isolated from each other, you could think of a sender to be a
privileged process something like which is run by the system administrator and the receiver
process to be something which is an privilege process, so you can also assume that these 2

sender and receiver processes are run by totally different users.

So what we do know about the operating system and the hardware is that there are various
mechanisms which are incorporated in both the hardware and the system software that would
ensure that this receiver would not directly be able to read or write data from the sender and
vice versa, however what we have shown now is that the sender and the receiver can actually
use a shared cache memory to transfer information from one process to another, so note that

when cache memory is used there is no implicit way to actually...

For one process to read from the cache memory but what we will see in as we have seen in
the theory videos before, we could use the execution time for a memory access to pass on
information from one process to the other, so let us say that we have a message and assume a
binary message of say 1101101 to be sent from the sender to the receiver. What we assume
further is that both of these processors that is the sender and the receiver are sharing a
common cache memory and running on the same processor for example the processor 0 and
processor 4, so what is done in order to create the cache cover channel is that the sender and

the receiver 1% agree upon specific set of ports.

So let us call these ports as 10, 20, 30 and 40, so we call 2 these ports as the data ports, so it is
called data ports size and 30 and 40 as the control ports. So these ports are prior to actually
starting the cover channel, the sender and receiver agree upon these ports and essentially in
our program the demonstration that we would see we would use 1 port say port 30 to send the
odd bits and port 40 to send the even bits, so for example in this particular case we would

have these ports sending the port number 10.

So since we start with a 0™ bit this particular bit this thing will be actually sent to this 1 and
the next bit which is 1 again would be sent on this port 10, the 3 bit which is 0 would be sent
here with the control line even and the 4" bit which is here would be having the control of 30
and sent on this port, so in this way what would happen is that we are sending bit by bit from

the sender to the receiver, so let us see how this program actually works.

(Refer Slide Time: 11:38)

3 1y) 1:04PM 2 ambika LF

amblka@madhava: /scratch/amblka/cou

ambika@madhava:/scratch/ambika/courses/SSE/cover|
t_channel/proto1s ls

Makefile

README. txt receiver.c sender.c
ambikaémadhava: /scratch/ambika/cour ses/SSE/cover

ambikaémadhava: /scratch/ambika/courses/SSE/cov|
ert_channel/proto1$ taskset -c 4 ./sender 10 2

Starting to send
0 : Sender : Tx 0 Bit : even
1 : Sender : Tx 1 Bit : odd

t_channel/proto1$ make clean
rm -f receiver sender
ambika@madhava:/scratch/ambika/courses/SSE/cover
t_channel/protol$ make
Becc sender.c -o sender
gcc receiver.c -o receiver
ambika@madhava: /scratch/ambika/courses/SSE/cover
t_channel/protol$ taskset -c 0 ./receiver 10 20
30 40

Reciever: 1 (even)

Reciever:

Reciever:

(even)

o
1: Reciever:

[1y) 1:07PM 2 ambika L

:/scratch/ambika/cour ses/SSE/covert_channel /protol$ | |

ambikaémadhava: /scratch/ambika/cour ses/SSE/cov|
ert_channel/protol$ taskset -c 4 ./sender 10 2|
0 30 40
--Starting to send

: Sender : Bit : even

: Sender : Bit : odd

: Sender : Bit : even

: Sender : Bit : odd

amblka@madhava: /scratch/ambika/cou E
0
1
2
3
4 : sender : Bit : even
5
6
7
8
A

t_channel/protol$ make
gcc sender.c -o sender

gcc receiver.c -o receiver

anbikaémadhava: /scratch/ambika/cour ses/SSE/cover

t_channel/protol$ taskset -c 0 ./receiver 10 20 Iaen e

: Sender : Bit : even
: Sender : Bit : odd
: Sender : Bit : even

ambika@madhava:/scratch/ambika/courses/SSE/coy|

(even) ert_channel/proto1s [|

(even)

Reciever: (odd)
Recieves (odd)
: Reciever: 1 (odd)
Reciever: 1 (even)
Recieve: (even)
Reciever (odd)
Recieves (odd)
: Reciever: 1 (odd)
: Recieve (even)
: Reciever: 1 (even)
: Recieve (odd)

: /scratchjambika/courses/SSE/covert_channel/protol L3 Ty 4) 1:08PM 2 ambika {'t

—
[QP ruthor: Gnanambikai
‘ specific to my system's configurations

PGSIZE : 4KB
DCache associativity:s ,

ﬂ Cache Block size:64B ,
B lno of Dcache sets : 64,

Dcache size : 32k8

Vou will have to tweak the code a bit, if your system has different configurations than above.
*/
rinclude <stdio.h>

BB |-inciude <starib.he
#include <time.h>

[#define TIME_PERIOD (1<<24)

the number of iterations to send a single bit */

FEMl/+ Cache parameters */

Rl i fine BLOCK_OFFSET_BITS

gl define SET_BITS

[#cefine Assoc_siTs
#define

/* cache address offset bits */

/* set address bits */

3 /* lowest 3 bits of the tag address decides the associativity in L1 cache */
(BLOCK_OFFSET_BITS + SET_BITS + ASSOC_BITS)

N

6
6

#define DCACHE_SIZE 32768
#define INT_SIZE 4
#define DATASIZE 10
#define EPOCH 128ULL

#if defined(__i386_)
static __inline__ unsigned long long rdtsc(void)
{
unsigned long long int x;
__asm__ volatile("xorl %%eax,¥%%eax\n cpuid \n"

"%eax", "%ebx", "%ecx", "%edx"); // flush pipeline

__asm__ volatile (".byte OxOf, 0x31" : "=A" (x));
__asm__ volatile("xorl %%eax,%%eax\n cpuid \n" "%eax", "Xebx", "Xecx", "X%edx"); // flush pipeline
x5
= N
t M- visuaL -- 26,16 Top

9 1y 4) 1:08PM 2 ambika

You will have to tweak the code a bit, if your system has different configurations than above

-
T
¥ ¢ include <stdlib.h>
#include <time.h>
6 #define TIME_PERIOD (1<<24) /* the number of iterations to send a single bit */

/* Cache parameters */

#define BLOCK_OFFSET_BITS 6 /* cache address offset bits */
#define SET_BITS 6 /* set address bits */
#define ASSOC_BITS 3 /* lowest 3 bits of the tag address decides the associativity in L1 cache */
#define TOT_BITS (BLOCK_OFFSET_BITS + SET_BITS + ASSOC_BITS)
u Bidefine DCACHE_SIZE 32768
#define INT_SIZE 4
el e fine DATASIZE 10
#define EPOCH 128ULL

#if defined(__i386_)

static __inline__ unsigned long long rdtsc(void)

(
unsigned long long int x;
__asm__ volatile("xorl %%eax,%%eax\n cpuid \n" :
__asm__ volatile (".byte Ox0f, 0x31" :W'=A" (x))
__asm__ volatile("xorl %%eax,%%eax\n cpuid \n"

X

"%eax", "%ebx", "%ecx", "%edx"); // flush pipeline

"%eax", "%ebx", "%ecx", "%edx"); // flush pipeline

>
#elif defined(_ x86_64_)
static __inline__ unsigned long long rdtsc(void)

unsigned hi, lo;

__asm__ __volatile__ ("xorl %%eax,%%eax\n cpuid \n" ::: "%eax", "%ebx", "Xecx", "%edx"); // flush pipeline
__asm__ _ volatile__ ("rdtsc" "(lo), " (hi))
__asm__ __volatile__ ("xorl %%eax,%%eax\n cpuid \n" "%eax", "%ebx", "%ecx", "%edx"); // flush pipeline

((unsigned long long)lo)|(((unsigned long long)hi)<<32);

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1 [1y 4) 1:09PM 2 ambika

/* declare an array as large as the L1 D cache; align it to an
offset of 64 bytes to make things simple */
unsigned int send_array[DCACHE SIZE / INT_SIZE] _ attribute ((aligned(64)));

/-
* main takes 4 command line parameters. Each parameter represents a cache set (0 - 63) and must
* not overlap. The first two parameters are used for sending bits (0 or 1). The second two

* parameters are used for controlling the communication (it takes values even or odd).

*/

int main(int ¢,char *argv(])

long int set_index_AO = strtol(argv[1], NULL, 0); /* This cache set is used to transfer a 0 to receiver */

long int set_index_A1 = strtol(argv[2], NULL, 0); /* This cache set is used to transfer a 1 to receiver */

long int set_index BO = strtol(argv[3], NULL, 0); /* This set signals the receiver that the bit sent is at an
odd index */

long int set_index BE = strtol(argv[4], NULL, 0); /* This set signals the receiver that the bit sent is at an
even index */

long long int A0_0, AO_1, AD_2, AO_3, AD_4, AO_S, AO_6, AO_7; /* 8 associate cache lines corresponding to set A
o */

long long int A1_0, A1_1, A1_2, A1_3, A1_4, A1_5, A1_6, A1_7; /* 8 associate cache lines corresponding to set A
1%

long long int BO_0, BO_1, BO_2, BO_3, BO_4, BO_S, BO_6, BO_7; /* 8 associate cache lines corresponding to set B
0 */

long long int BE_O, BE_1, BE_2, BE_3, BE_4, BE_S, BE_6, BE_7; /* 8 associate cache lines corresponding to set B
1%

long int send_start = (long long int) send_array; /* address of the send_array */

long int y_start;
unsigned long long start, end;

/% Extracting the bits (14 - 12) of the starting address of the array
These bit represent the associativity */
y_start = (send_start >> (SET_BITS + BLOCK_OFFSET_BITS)) & ((1<<ASSOC_BITS)-1)

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/protot 5 1y 4) 1:11PM 2 ambika {'f
#endif

/* declare an array as large as the L1 D cache; align it to an
offset of 64 bytes to make things simple */
unsigned int send_array[DCACHE_SIZE / INT_SIZE] _ attribute__ ((aligned(64)));

=
* main takes 4 command line parameters. Each parameter represents a cache set (0 - 63) and must
* not overlap. The first two parameters are used for sending bits (0 or 1). The second two

* parameters are used for controlling the communication (it takes values even or odd).

)

int main(int c,char *argv(])

long int set_index_A0 = strtol(argv[1], NULL, 0); /* This cache set is used to transfer a 0 to receiver */
long int set_index_A1 = strtol(argv[2], NULL, 0); /* This cache set is used to transfer a 1 to receiver */

long int set_index_BO = strtol(argv[3], NULL, 0); /* This set signals the receiver that the bit sent is at an
long int set_index_BE = strtol(argv[4], NULL, 0); /* This set signals the receiver that the bit sent is at an

long long
long long int A1_0, A1_1, A1_2, A1_3,
long long int BO_O, BO_1, BO_2, BO_3, BO_4,
long long int BE_O, BE_1, BE_2, BE_3, BE_4,

~* &assa(m(e cache lines corresponding to set A
/* Wassociate cache lines corresponding to set A
/* 8 associate cache lines corresponding to set B
/* 8 associate cache lines corresponding to set B

Bl [EIEL

EN

long int send_start = (long long int) send_array; /* address of the send_array */

long int y_start;
unsigned long long start, end;

/* Extracting the bits (14 - 12) of the starting address of the array.
These bit represent the associativity */
y_start = (send_start >> (SET_BITS + BLOCK_OFFSET_BITS)) & ((1<<ASSOC_BITS)-1) ;

/* Form the offsets to be accessed */

/7 Construct the VA for sending bit 0

A0_0=(((((send_start >> TOT_BITS) << ASSOC BITS) | y_start) << SET_BITS) | set_index A0) << BLOCK OFFSET B

send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+1)) << SET_BITS) | set_index A0) << BLOCK_OFFS

send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+2)) << SET_BITS) | set_index A0) << BLOCK_OFFS

send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+3)) << SET_BITS) | set_index A0) << BLOCK_OFFS
71,62-69 32%

[1y 4) 1:12PM 2 ambika {it

These bit represent the associativity */
y_start = (send_start >> (SET_BITS + BLOCK_OFFSET_BITS)) & ((1<<ASSOC_BITS)-1) ;

/* Form the offsets to be accessed */
/1 Construct the VA for sending bit
AO_0=(((((send_start >» TOT_BITS
AO_1=(((((send_start >> TOT_BITS
A0_2=(((((send_start >> TOT_BITS

o

<< ASSOC_BITS)
<< ASSOC_BITS)

) | y_start) << SET_BITS) | set_index_AD) << BLOCK_OFFSET_B
) | (y_start+1)) << SET_BITS) | set_index_AQ0) << BLOCK_OFFS
) << ASSOC_BITS) | (y_start+2)) << SET_BITS set_index_A0) << BLOCK_OFFS
A0_3=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_starts3)) << SET_BITS set_index_A0) << BLOCK_OFFS
A0_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+4)) << SET_BITS set_index_A0) << BLOCK_OFFS

) |)

) |)

) |)

A0_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_starts5)) << SET_BITS set_index_A0) << BLOCK_OFFS
A0_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+6)) << SET_BITS set_index_AO) << BLOCK_OFFS
AO_7=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_starts7)) << SET_BITS set_index_AO) << BLOCK_OFFS

/7 Construct the VA for sending bit 1

A1_0=(((((send_start >> TOT_BITS) << ASSOC_BITS) | y_start) << SET_BITS) | set_index A1) << BLOCK_OFFSET_B
A1_1=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+1)) << SET_BITS) | set_index_A1) << BLOCK OFFS
A1_2=(((((send_start >> TOT_BITS) << ASS0C BITS) | (y_start+2)) << SET BITS) | set_index Al) << BLOCK OFFS
A1_3=(((((send_start >> TOT_BITS) << ASSOC BITS) | (y_start+3)) << SET_BITS) | set_index A1) << BLOCK OFFS
A1_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+d)) << SET_BITS) | set_index_A1) << BLOCK_OFFS
A1_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+5)) << SET_BITS) | set_index_A1) << BLOCK_OFFS
A1_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+6)) << SET_BITS) | set_index_A1) << BLOCK_OFFS
A1_7=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+7)) << SET_BITS) | set_index_A1) << BLOCK_OFFS

// Construct the VA for
8 CCC

BLC

SETBIYS set_index_BO BLOCK_OFFS

// Construct the VA for sending bit the even bit

BE_0=(((((send_start >> TOT_BITS) << ASSOC_BITS) | y_start) << SET_BITS) | set_index BE) << BLOCK OFFSET_B

|
BE_1=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+l)) << SET_BITS) | set_index BE) << BLOCK_OFFS
BE_2=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+2)) << SET_BITS) | set_index BE) << BLOCK_OFFS
BE_3=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+3)) << SET_BITS) | set_index BE) << BLOCK_OFFS
BE_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+4)) << SET_BITS) | set_index BE) << BLOCK_OFFS

-~ VISUAL -- 118,35-42 53%

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1 ‘ ty @) 1:12PM 2 ambika
A1_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+5)) << SET_BITS) | set_index_A1) << BLOCK_OFFS
A1_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+6)) << SET_BITS) | set_index A1) << BLOCK_OFFS
A1_7=(((((send_start >> TOT_BITS) << ASSOC BITS) | (y_start+7)) << SET_BITS) | set_index A1) << BLOCK OFFS

// Construct the VA for s the odd bit

<< ASSOC_BITS << SET_BITS lex_BO) << BLOCK_OFFS

| set_inds

// Construct the VA for sending bit the even bit
BE_0=(((((send_start >> TOT_BITS) << ASSOC BITS
BE_1=(((((send_start >» TOT BITS) << ASSOC BITS
BE_2=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+2)) << SET_BITS
BE_3=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+3)) << SET_BITS

) | y_start) << SET BITS) | si
DAl))
)|))
)|))
BE_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) | (y_start+4)) << SET_BITS)
)l))
DAl))
) 1)))

(y_start+1)) << SET_BITS

et_index BE) << BLOCK OFFSET_B
| set_index BE) << BLOCK_OFFS
set_index BE) << BLOCK_OFFS
set_index_BE) << BLOCK_OFFS
set_index_BE) << BLOCK_OFFS

)

)

)

A

BE_5=(((((send_start >> TOT_BITS) << ASSOC_BITS (y_start+5)) << SET_BITS
BE_6=(((((send_start >> TOT_BITS) << ASSOC_BITS (y_start+6)) << SET_BITS
BE_7=(((((send_start >> TOT_BITS) << ASSOC_BITS (y_start+7)) << SET_BITS

set_index_BE) << BLOCK_OFFS
set_index_BE) << BLOCK_OFFS
set_index_BE) << BLOCK_OFFS

unsigned long long i=0 , k=0;

float time = 0;

unsigned int data[DATASIZE]={0,1,1,0, 1, 1, 0, 0, 0, 1};

long long int tA_0 , tA_1 , tA2, tA_3, tA4, tA5, tA6, tA_7;
long long int tB_0 , tB_1 , tB_2, tB 3, tB 4, tB.S, tB 6, tB_7;
printf(" Starting to send -------- \n*y;

(k < DATASIZE)
: N
/* set tA_* to the bit to be sent (0 or 1) */

printf("s
(data[k]

-~ VISUAL -- 118,35-42 67%

[1y 4) 1:12PM 2 ambika {'

t 1 1
' long long int tA O , tA1 , tA 2, tA 3, tA 4, tAS5, tA6, tA7;
long long int tB O , tB_1 , tB_2, tB 3, tB_4, tBS, tB 6, tB_7;

— printf("--ammna- starting to send -------- \n");

6 (k < DATASIZE)
{

[¥* set tA_* to the bit to be sent (0 or 1) */
printf(xd
(datak]

}
{
M tA_0 = A1_0; tA_ :
tA_4 = A1_4; tA H
- printf(“sender :
}

/* set tB_* to the bit to the control (E or O bit) */

= BO_3

= BO_7
tB_O = BE_O; tB1 = BE_1; tB 2 = BE_2; tB_3 = BE 3;
tB_4 = BE_4; tBS = BES; tB 6 = BE_6; tB 7 = BE_7

printf("Bit : even \n");

/* Note the 128ULL. This is required because the sender needs to be made
= much slower than the receiver */
t M- visuaL -- 132,58-65 82%

5 1y 4) 1:13PM 2 ambika {i

(k& 1) {
tB_O = BO_O; tB_1 = BO_1; tB2
tB_4 = BO_4; tB_5 = BOS; tB_6
printf("Bit : odd \n");

}
{
tB_O = BE_O; tB_1 ;tB2 =
tB_4 = BE_4; tB_S tB_6 =
printf("Bit : even
I

/* Note the 128ULL. This is required because the sender needs to be made
much slower than the receiver */

(i=0; i< EPO[W*TIME_PERIOD; i++){ // just access
_asm____volatile_ ("");
/7 load/store operations to send a 0 or a 1
(unsigned int)tA_0 = i;
(unsigned int)tA_1 = i#1;
(unsigned int)tA_2 = i+2;
(unsigned int)tA_3 = i43;
(unsigned int)tA_4 = i+4;
(unsigned int)tA_S = is5;
(unsigned int)tA_6 = i+6;
(unsigned int)tA_ 7 = is7;
// load/store operations to send if the bit sent is at an odd or even index
(unsigned int)tB 0 = i;
INt*)tB_1 = i+1;
INt*)tB_2 = i+2;

(unsigned int)tB_3 = i+3;
(unsigned int)tB_4 = i+4;
(unsigned int)tB_5 = i+5;
(unsigned int)tB_6 = i+6;
(unsigned int)tB 7 = i+7;

¥

Ki+:

}
0:

. 171,18-32 Bot

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1) 1:13PM 2 ambika ¥

=@l ou will have to tweak the code a bit, if your system has different configurations than above.

®

i
el 10 <stiion>
#include <stdlib.h>
ﬂ #include <time.h>
#define TIME_PERIOD (1<<24) /* the number of iterations to send a single bit */
B /* Cache parameters */
#define BLOCK_OFFSET_BITS 6 /* cache address offset bits */
¢ _J#define SET_BITS 6 /* set address bits */
— W#define ASSOC_BITS 3 /* lowest 3 bits of the tag address decides the associativity in L1 cache */
#define TOT_BITS (BLOCK_OFFSET_BITS + SET_BITS + ASSOC_BITS)
#define DCACHE_SIZE 32768
#define INT_SIZE 4

#if defined(__i386_)
static __inline__ unsigned long long rdtsc(void)

Rnnhno DATASIZE 10
—

=H [
unsigned long long int x;
_asm__ volatile("xorl %%eax,%%eax\n cpuid \n" ::: "%eax", "%ebx", "%ecx”, "%edx"); // flush pipeline
__asm__ volatile (".byte 0xOf, 0x31" : "=A" (x)):
_asm__ volatile("xorl %%eax,%%eax\n cpuid \n" ::: "%eax", "%ebx", "%ecx”, "%edx"); // flush pipeline

o0

>
#elif defined(__x86_64__)

static __inline_ unsigned long long rdtsc(void)
{
unsigned hi, lo;
__asm__ __volatile__ ("xorl %%eax,%%eax\n cpuid \n" ::: "%eax", "%ebx", "%ecx", "%edx"); // flush pipeline
asm _volatile__ ("rdtse” : "=a"(lo), "=d"(hi)):
_asm__ __volatile__ ("xorl %%eax,%%eax\n cpuid \n" ::: "%eax", "%ebx", "Xecx", "%edx"); // flush pipeline

((unsigned long long)lo)|(((unsigned long long)hi)<<32);

" -~ VISUAL LINE -- 32,12 7%

[1y 4) 1:16PM 2 ambika {it

tB_0 = BO_O; tB_1 = BO_1; tB_2 = BO_.

tB_4 = BO_4; tB_5 = BO_S; tB_6 = BO_t 5)
printf("Bit : odd \n");

tB O = BELO; tB_1 = BE_1; tB_2 = BE_2; tB 3 = BE_3;
tB 4 = BE_4; tBS = BE5; tB_6 = BE_6; tB 7 = BE_7;
printf("Bit : even \n");

/* Note the 128ULL. This is required because the sender needs to be made
much slower than the receiver */
(i=0; i< BPOCH*TIME_PERIOD; i++){ // just access
_asm__ __volatile_("");
BE 77 load/store operati
oA
B8

to send a 0 or a 1
(unsigned int)tA_0 = i;

(unsigned int)tA
(unsigned int)tA
(unsigned int)tA

(unsigned int)tA
(unsigned int)tA

/7 load/store operations to send if the bit sent is at an odd or even index
(unsigned int)tB_0 = i;

(unsigned int)tB;
(unsigned int)te;
(unsigned int)t8
(unsigned int)tB,

(u d int)tB.
(unsigned int)tB_{ +6;
(unsigned int)tB_7 = i+7;
I;
ké+;
}
0;

b 171,15-29 Bot

So over here we have 2 completely different programs one is known as the receiver.c the
other one is the sender.c will also be sharing these programs with you, so you can actually try
this out on your machines. So the 1* thing we do is do a make clean and make and we obtain
2 executables one is a sender and the 2™ is the receiver. So what we will shows is that it is
possible to actually communicate information from the sender through the receiver through
the shared cache, so before going into details about how this program is actually working we

will just look at the demonstration first.

The 1% thing to do is to start the receiver and we need to ensure that the cache is shared and as
we have seen earlier in this video the processor 0 and the processor 4 are essentially sharing

the same CPU core thus we need to ensure that both these processors the receiver and the

server are executing on exactly this core, so we can do this by the task that command taskset

minus C 0.

Slash receiver and we provided the agreed-upon ports over here, so 10, 20, 30, 40 so recollect
that we define the ports in the cache cover channel as essentially the different cache sets, so
there were 64 cache sets in our L1 data cache and we have decided to choose these 4 cache
sets, cache set 10, 20, 30 and 44 for our communication. 2 of these cache sets 10 and 20 are
used for transferring data while the cache set 30 and 40 are used for control. So let us start the
receiver and in a totally isolated environment start the server as follows, so we need to ensure

that the server is running on the CPU 4.

So we run the tasks set specify the CPU that we want to run in this case it is 4 with exactly
the same agreed-upon ports 10, 20, 30 and 40 so what is happening now is that the sender is
beginning to send a 0™ bit it is at a time even location and we see that this sender is
essentially through the cache able to communicate to the receiver, so apparently this
particular 0 bit has been received over here by the receiver. The next bit which is sent by the
sender is 1, so this is the odd bit and we see that the receiver has received this particular

weight, so let us look for some more time to see more bits being transmitted.

The 3" bit being send is 1 again so this is an even bit and we will see that after sometime the
receiver has indeed received this bit as well, so the bit number 2 is the even bit got a value of
1, so we can just wait for may be a minute or so to see more bits being transmitted, so this is
an extremely slow process but what it signifies is that these 2 process sender and receiver in
spite of the heavy protection provided by the operating system and hardware have been able
to actually communicate with each other, so this was on 2 regular processes but we could also
demonstrate this and various other infrastructures for example even with the trusted execution
environment such as the SGX and (())(15:45) that we have studied earlier in this lecture such

kind of cover channels can be done from a trusted environment to the untrusted appointment.

So one thing that de-markets a particular cover channel is the rate at which data can be
transferred from the sender to the receiver, so over here as we see it is an extremely slow
process, so typically the units would be something like bits per second and as we see over
here the score is not very optimised. This seems to be much less than 1 bit per second but
nevertheless we see that attackers are quite motivated and the rate of transmission is not a

very critical issue for attackers as long as the information can be obtained on the other side.

Now that we have seen these programs work, so let us look a little more in detail about what
is happening inside this will, so let us stop the receiver and the server. Now one thing for you
think about is that recollect that...or if you just go back on the video you will see that there
are some bits that gets received even though the sender has not yet started, so one thing for

you to think about is why such a thing has actually happened.

Okay so let us go into the code we will open our editor and look at the sender code first okay
so this code has been written by Gnanambikai who is a Ph.D. student at IIT Madras, so
important thing showing here is this particular time period and we will prefer to this later on
in this particular code and what we see is that various attributes about the cache memory
present in the system at least the cache memory that has been targeted for this cover channel
has been hashed defined over here for example the de cache size of 32 kilobytes. Number of

set bits which is 6 over here because we have 64 different sets.

The offset bids within a cache line is again 6 bits because each cache line is of 64 bits and
something known as total bi ts which represents the associated bits, set bits and block address
bits. One thing what was important over here was that the associativity of the cache memory,
so recollect that this particular memory is an 8 way associative cache and therefore in order to
create conflict with a particular set there should be 8 addresses following on the same cache

set.

The 8 addresses should be designed in such a way or should be crafted in such a way such
that each of them feels a particular way in a cache corresponding to that set. So the arguments
that are provided over here that is the control ports and the data ports that is 10, 20, 30 and 40
are taken from the command line and set into these various integers set index A0, Al, BO and
B1, so A0 and Al are used to transfer 0 and 1 while BO and the BE are used for the control

ports and where they are used to transfer the odd bits and the even bits respectively.

The next thing we do is we craft different addresses, note that we require 4 sets of addresses,
each is a collection of 8 different addresses, so this for example A0O to A07 is an 8 way
corresponds to the 8 way associative cache. So I not go into details about this but giving the
fact that what we discussed earlier in this video, you can see how the 8 addresses are crafted,
so that all of them would access exactly the same set. We assume policy such as the least
recently used to be implemented in the cache and assume the fact that all of these 8 addresses

would fall in the same cache sets but in different ways of the cache.

So similarly we have A0, Al addresses being crafted BO addresses and the BE addresses
being crafted. The next thing would be quite interesting so we would look at how the data is
being transmitted. We have defined the data to be transmitted from the sender to the receiver
as follows, so the data comprises of this binary bits 011 and so on and what we do over here
is that we start to craft memory and start to actually send them from the sender to the

receiver, so important in this particular thing is this particular fall loop.

So each iteration is run for epoch times the time period, this is to ensure that the receiver
which is running (())(20:55) from the sender process has sufficient amount of time to actually
lead this information, so we look at how the epoch is defined which is hash defined to 128
over here as seen over here and the time period is 2 power 24 which means that these loops
are run for a total of 2 power 24 time 128 things so this would be long enough to procure the
receiver sufficient amount of time to actually detect bits being transmitted. The next thing we

do is create memory accesses to various locations.

Now tA underscore 0 and tB underscore 0 correspond to load and store operations to these
addresses corresponding to the data being transmitted. Recollect that TB are used in order to
control the data and specific odd or even bits being transmitted and tA I used to send Os and
Is respectively, so essentially this is the communication which is happening by the sender, the
sender is making memory accesses to these particular memory addresses. So each time the
sender actually make such a memory access, the data if it is not present in the cache would be
fetched from a lower cache in this case the L2 and L3 cache and stored in the L1 cache as

well as stored in a register pointed to buy this.

Now what happens on the receiver side is that the receiver also runs a similar loop as shown
over here but the receiver would also time that particular loop. Now due to the conflicts that
arise due to the common cache and the agreed-upon cache sets, the conflicts may actually
cause certain memory accesses to be faster and certain memory access to be slower, so the
increase time would indicate that there is something being transmitted by the sender on that
particular cache set and therefore a miss has occurred the data has to be retrieved from the

lower cache or from the de run. Thank you.

