
Information Security - 5 - Secure Systems Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
'Demo- Cache-timing based Covert Channel - Part 1'

Hello and welcome to this demonstration in the course for secure systems engineering. In this

particular demonstration we will look at cover channels, we have already seen the theory

about cover channels and how they can be established through the cache and in this

demonstration we will actually look at creating such a cover channel and how we could

actually transfer information from one process to another.

(Refer Slide Time: 0:45)

So this particular sector may not be runnable from the virtual machine, although we will

actually provide the source code that can be downloaded and tried on your own machines. So

while setting up a cover channel using the cache memory the 1st thing to identify when we are

starting to design a cache-based cover channel or is to identify information about the

processor and also about the cache memory present in that processor, so the machine that

were using over here is a regular i7 machine from Intel and it is running an open to operating

system.

The 1st thing to note is details about this processor, so this processor is 4 cores processor and

these 4 cores there are 8 hyper threats, essentially per core as 2 hyper threats. If you want to

try this on your own system which is running open 2 you can run the commands cache slash

cat slash proc cpuinfo and it would list details of all the processor present in your system for

example over here since we have mentioned that this is 4 core machine, so each core is given

a particular core ID starting from 0, 1, 2 and 3, so the core ID for example over here is 3 and

as we scroll upwards we see other core IDs of 1 and 0 and so on.

The next thing we also mention that in this processor we had to hyper threads sharing the

same CPU core particularly what we see if we scroll up is that the processor number 0 and

the processor number 4 share the same CPU core, so we can verify this as follows. So this is

processor 0 and which is present in this on the core with an ID of 0. Now if you look at the

processor 4 so processor 4 is also on the same for core with the same core ID.

Similarly if you go through the other things and this particular machine you see that

processor 1 and processor 5 are sharing the same core essentially the core ID 1 and so on. In

order to create a cover channel between 2 processors what we would require is to identify 2

hyper threats which are running on the same core, so let us choose the core processors 0 and

processor 4, the next thing we need to know is the cache structure for this particular

processors, so this information can be obtained from the directory…sys devices CPU cache,

so this particular directory list all the cache memories that are accessible from the CPU 0.

So will go into index 0 and we will look at the type of cache which is present over here and

the type is D data which indicates that this particular cache represented at CPU 0 index 0 is a

data cache. It has a size of 32 kilobytes as seen over here and we can also get the information

about the other processes which are sharing this particular cache memory, so this can be

obtained from the file shared CPU list and we see that there are 2 processors, processor 0 and

processor 4 which are actually sharing this particular cache, so now if we want to build a

cache cover channel, we could have…and we want to build this cache cover channels

between 2 processes and shared information between these 2 processes.

What we would be able to do is we could run one process in the CPU 0 and one process in

CPU 4 and make use of the shared cache to exchange information. We can also obtain other

details about this particular cache memory for example the ways of associate key is as follow

so this is 8 way associative cache and the number of sets that are present is 64 okay and the

size of each cache line that is present is as follows, is also 64. Based on all of this information

we can next construct a typical address of such a cache.

(Refer Slide Time: 6:18)

So what we did mention was that this particular cache memory had a cache line size of 64

bits which would indicate that the lowest bits of the address, the lowest 6 bits of the address

comprises addressing within the cache line size which is of 6 bits. It also had 64 cache sets

and therefore in order to address 64 cache sets we need another 6 bits and therefore we have

set addressing which has like another 6 bits, these 2 actually give the offset with in a line and

these 6 bits provide the address for a particular set. So later on as we would see in the

programs we would require to no such information in order to build our cache base cover

channel. So now that we know about the cache structure and the processors within this

particular machine let us next try to find out how we could actually build a cache base cover

channel.

(Refer Slide Time: 7:39)

So what we want to achieve is that we have 2 processes running on the system these

processors are called sender and receiver… and receiver and we assume that these 2

processors are completely isolated from each other, you could think of a sender to be a

privileged process something like which is run by the system administrator and the receiver

process to be something which is an privilege process, so you can also assume that these 2

sender and receiver processes are run by totally different users.

So what we do know about the operating system and the hardware is that there are various

mechanisms which are incorporated in both the hardware and the system software that would

ensure that this receiver would not directly be able to read or write data from the sender and

vice versa, however what we have shown now is that the sender and the receiver can actually

use a shared cache memory to transfer information from one process to another, so note that

when cache memory is used there is no implicit way to actually…

For one process to read from the cache memory but what we will see in as we have seen in

the theory videos before, we could use the execution time for a memory access to pass on

information from one process to the other, so let us say that we have a message and assume a

binary message of say 1101101 to be sent from the sender to the receiver. What we assume

further is that both of these processors that is the sender and the receiver are sharing a

common cache memory and running on the same processor for example the processor 0 and

processor 4, so what is done in order to create the cache cover channel is that the sender and

the receiver 1st agree upon specific set of ports.

So let us call these ports as 10, 20, 30 and 40, so we call 2 these ports as the data ports, so it is

called data ports size and 30 and 40 as the control ports. So these ports are prior to actually

starting the cover channel, the sender and receiver agree upon these ports and essentially in

our program the demonstration that we would see we would use 1 port say port 30 to send the

odd bits and port 40 to send the even bits, so for example in this particular case we would

have these ports sending the port number 10.

So since we start with a 0th bit this particular bit this thing will be actually sent to this 1 and

the next bit which is 1 again would be sent on this port 10, the 3rd bit which is 0 would be sent

here with the control line even and the 4th bit which is here would be having the control of 30

and sent on this port, so in this way what would happen is that we are sending bit by bit from

the sender to the receiver, so let us see how this program actually works.

(Refer Slide Time: 11:38)

So over here we have 2 completely different programs one is known as the receiver.c the

other one is the sender.c will also be sharing these programs with you, so you can actually try

this out on your machines. So the 1st thing we do is do a make clean and make and we obtain

2 executables one is a sender and the 2nd is the receiver. So what we will shows is that it is

possible to actually communicate information from the sender through the receiver through

the shared cache, so before going into details about how this program is actually working we

will just look at the demonstration first.

The 1st thing to do is to start the receiver and we need to ensure that the cache is shared and as

we have seen earlier in this video the processor 0 and the processor 4 are essentially sharing

the same CPU core thus we need to ensure that both these processors the receiver and the

server are executing on exactly this core, so we can do this by the task that command taskset

minus C 0.

Slash receiver and we provided the agreed-upon ports over here, so 10, 20, 30, 40 so recollect

that we define the ports in the cache cover channel as essentially the different cache sets, so

there were 64 cache sets in our L1 data cache and we have decided to choose these 4 cache

sets, cache set 10, 20, 30 and 44 for our communication. 2 of these cache sets 10 and 20 are

used for transferring data while the cache set 30 and 40 are used for control. So let us start the

receiver and in a totally isolated environment start the server as follows, so we need to ensure

that the server is running on the CPU 4.

So we run the tasks set specify the CPU that we want to run in this case it is 4 with exactly

the same agreed-upon ports 10, 20, 30 and 40 so what is happening now is that the sender is

beginning to send a 0th bit it is at a time even location and we see that this sender is

essentially through the cache able to communicate to the receiver, so apparently this

particular 0 bit has been received over here by the receiver. The next bit which is sent by the

sender is 1, so this is the odd bit and we see that the receiver has received this particular

weight, so let us look for some more time to see more bits being transmitted.

The 3rd bit being send is 1 again so this is an even bit and we will see that after sometime the

receiver has indeed received this bit as well, so the bit number 2 is the even bit got a value of

1, so we can just wait for may be a minute or so to see more bits being transmitted, so this is

an extremely slow process but what it signifies is that these 2 process sender and receiver in

spite of the heavy protection provided by the operating system and hardware have been able

to actually communicate with each other, so this was on 2 regular processes but we could also

demonstrate this and various other infrastructures for example even with the trusted execution

environment such as the SGX and (())(15:45) that we have studied earlier in this lecture such

kind of cover channels can be done from a trusted environment to the untrusted appointment.

So one thing that de-markets a particular cover channel is the rate at which data can be

transferred from the sender to the receiver, so over here as we see it is an extremely slow

process, so typically the units would be something like bits per second and as we see over

here the score is not very optimised. This seems to be much less than 1 bit per second but

nevertheless we see that attackers are quite motivated and the rate of transmission is not a

very critical issue for attackers as long as the information can be obtained on the other side.

Now that we have seen these programs work, so let us look a little more in detail about what

is happening inside this will, so let us stop the receiver and the server. Now one thing for you

think about is that recollect that…or if you just go back on the video you will see that there

are some bits that gets received even though the sender has not yet started, so one thing for

you to think about is why such a thing has actually happened.

Okay so let us go into the code we will open our editor and look at the sender code first okay

so this code has been written by Gnanambikai who is a Ph.D. student at IIT Madras, so

important thing showing here is this particular time period and we will prefer to this later on

in this particular code and what we see is that various attributes about the cache memory

present in the system at least the cache memory that has been targeted for this cover channel

has been hashed defined over here for example the de cache size of 32 kilobytes. Number of

set bits which is 6 over here because we have 64 different sets.

The offset bids within a cache line is again 6 bits because each cache line is of 64 bits and

something known as total bi ts which represents the associated bits, set bits and block address

bits. One thing what was important over here was that the associativity of the cache memory,

so recollect that this particular memory is an 8 way associative cache and therefore in order to

create conflict with a particular set there should be 8 addresses following on the same cache

set.

The 8 addresses should be designed in such a way or should be crafted in such a way such

that each of them feels a particular way in a cache corresponding to that set. So the arguments

that are provided over here that is the control ports and the data ports that is 10, 20, 30 and 40

are taken from the command line and set into these various integers set index A0, A1, B0 and

B1, so A0 and A1 are used to transfer 0 and 1 while B0 and the BE are used for the control

ports and where they are used to transfer the odd bits and the even bits respectively.

The next thing we do is we craft different addresses, note that we require 4 sets of addresses,

each is a collection of 8 different addresses, so this for example A00 to A07 is an 8 way

corresponds to the 8 way associative cache. So I not go into details about this but giving the

fact that what we discussed earlier in this video, you can see how the 8 addresses are crafted,

so that all of them would access exactly the same set. We assume policy such as the least

recently used to be implemented in the cache and assume the fact that all of these 8 addresses

would fall in the same cache sets but in different ways of the cache.

So similarly we have A0, A1 addresses being crafted B0 addresses and the BE addresses

being crafted. The next thing would be quite interesting so we would look at how the data is

being transmitted. We have defined the data to be transmitted from the sender to the receiver

as follows, so the data comprises of this binary bits 011 and so on and what we do over here

is that we start to craft memory and start to actually send them from the sender to the

receiver, so important in this particular thing is this particular fall loop.

So each iteration is run for epoch times the time period, this is to ensure that the receiver

which is running (())(20:55) from the sender process has sufficient amount of time to actually

lead this information, so we look at how the epoch is defined which is hash defined to 128

over here as seen over here and the time period is 2 power 24 which means that these loops

are run for a total of 2 power 24 time 128 things so this would be long enough to procure the

receiver sufficient amount of time to actually detect bits being transmitted. The next thing we

do is create memory accesses to various locations.

Now tA underscore 0 and tB underscore 0 correspond to load and store operations to these

addresses corresponding to the data being transmitted. Recollect that TB are used in order to

control the data and specific odd or even bits being transmitted and tA I used to send 0s and

1s respectively, so essentially this is the communication which is happening by the sender, the

sender is making memory accesses to these particular memory addresses. So each time the

sender actually make such a memory access, the data if it is not present in the cache would be

fetched from a lower cache in this case the L2 and L3 cache and stored in the L1 cache as

well as stored in a register pointed to buy this.

Now what happens on the receiver side is that the receiver also runs a similar loop as shown

over here but the receiver would also time that particular loop. Now due to the conflicts that

arise due to the common cache and the agreed-upon cache sets, the conflicts may actually

cause certain memory accesses to be faster and certain memory access to be slower, so the

increase time would indicate that there is something being transmitted by the sender on that

particular cache set and therefore a miss has occurred the data has to be retrieved from the

lower cache or from the de run. Thank you.

