Information Security - 5 - Secure Systems Engineering Professor Chester Rebeiro Indian Institute of Technology, Madras 'Demo- Cache-timing based Covert Channel - Part 1'

Hello and welcome to this demonstration in the course for secure systems engineering. In this particular demonstration we will look at cover channels, we have already seen the theory about cover channels and how they can be established through the cache and in this demonstration we will actually look at creating such a cover channel and how we could actually transfer information from one process to another.

(Refer Slide Time: 0:45)

madhava:/scratch/amb	ika/courses/SSE/covert_channel/proto1\$			
3				
-				
🥖 📉 😣 🔿 🕢 amb	ika@madhava: /scratch/ambika/courses/SSE/covert_ch	annel/proto1	Contractory of the local division of the loc	
ambika@madhay	a:/scratch/ambika/courses/SSE/covert_channel/pro	to1\$ clear		
	in services and that courses such cores c_enametrips	core excor		
ambika@madhav	a:/scratch/ambika/courses/SSE/covert channel/pro	to1\$ cat /proc/cpui		
nfo				
processor	: 0			
vendor_id	: GenuineIntel			
cpu family	: 6			
model	: 60			
model name	: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz			
stepping	: 3			
microcode	: 0x1a			
cpu MHz	: 3401.000			
cache size	: 8192 KB			
physical id	: 0			
siblings	: 8		A CONTRACTOR OF	
core id	: 0		Marrie Marrie	
cpu cores	: 4			
apicid	: 0			
initial apici	d : 0			
fpu	: yes			
fpu_exception	: yes			
cpuid level	: 13			
wp	: yes			
flags	: fpu vme de pse tsc msr pae mce cx8 apic sep	mtrr pge mca cmov		
pat pse36 clf	lush dts acpi mmx fxsr sse sse2 ss ht tm pbe sys	call nx pdpe1gb rdt		
scp 1m consta	nt_tsc arch_perfmon pebs bts rep_good nop1 xtopo	logy nonstop_tsc ap		
ertmpert eage	rfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx	est tm2 ssse3 fma		
cx16 xtpr pdc	m pcid sse4_1 sse4_2 x2apic movbe popcht tsc_dea	dline_timer aes xsa		
ve avx f16c r	drand lahf_Im abm ida arat epb xsaveopt pin pts	dtherm tpr_shadow v		
nmi flexprior	ity ept vpid isgsbase tsc_adjust bmi1 hle avx2 s	mep bm12 erms invpc		
1d rtm	6760 PR			
bogomips	: 6/83.//			
citiush size	: 04			

erminal	📮 🐔 🗠	a tt	((ا	12:44 PM	1 ambika	
<pre> #madhava:/scratch/ambik # </pre>	a/courses/SSE/covert_channel/proto1\$ []					
🥑 💿 ambik	a@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1					
vendor_id	: GenuineIntel					
cpu family	: 6					
model	: 60					
model name	: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz					
stepping	: 3					
microcode	: Ox1a					
cpu MHz	: 800.000					
cache size	: 8192 KB					
physical id	: 0					
siblings	: 8					
core id	: 3					
cpu cores	: 4					
apicid	: 7					
initial apicid	: 7					
fpu	: yes	1				
fpu_exception	: yes	The second				
cpuid level	: 13					
wp	: yes					
flags	: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov					
pat pse36 clflu	ish dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpeigb rdt					
scp Im constant	_tsc arcn_pertmon pebs bts rep_good nop1 xtopology honstop_tsc ap					
ermpert eagert	pu phi pcimuldad dtes64 monitor ds_cpi vmx smx est tm2 ssses tma					
cx16 xtpr pdcm	pcid sse4_1 sse4_2 x2apic movbe popcht tsc_deadline_timer aes xsa					
omi flovpriorit	and fam_im adminus and epo xsaveopt pin pts utnerm tpr_shadow v					
id rtm	y ept vpru isgsbase tst_aujust billi lite avxz silep billiz elilis ilivpt					
bogomins	6792 77					
clflush size	· 64					
cache alignment	: 64					
address sizes	: 39 bits physical. 48 bits virtual					
power managemen	it:					
ambika@madhava:	/scratch/ambika/courses/SSE/covert_channel/proto1\$					

So this particular sector may not be runnable from the virtual machine, although we will actually provide the source code that can be downloaded and tried on your own machines. So while setting up a cover channel using the cache memory the 1st thing to identify when we are starting to design a cache-based cover channel or is to identify information about the processor and also about the cache memory present in that processor, so the machine that were using over here is a regular i7 machine from Intel and it is running an open to operating system.

The 1st thing to note is details about this processor, so this processor is 4 cores processor and these 4 cores there are 8 hyper threats, essentially per core as 2 hyper threats. If you want to try this on your own system which is running open 2 you can run the commands cache slash cat slash proc cpuinfo and it would list details of all the processor present in your system for example over here since we have mentioned that this is 4 core machine, so each core is given a particular core ID starting from 0, 1, 2 and 3, so the core ID for example over here is 3 and as we scroll upwards we see other core IDs of 1 and 0 and so on.

The next thing we also mention that in this processor we had to hyper threads sharing the same CPU core particularly what we see if we scroll up is that the processor number 0 and the processor number 4 share the same CPU core, so we can verify this as follows. So this is processor 0 and which is present in this on the core with an ID of 0. Now if you look at the processor 4 so processor 4 is also on the same for core with the same core ID.

Similarly if you go through the other things and this particular machine you see that processor 1 and processor 5 are sharing the same core essentially the core ID 1 and so on. In order to create a cover channel between 2 processors what we would require is to identify 2 hyper threats which are running on the same core, so let us choose the core processors 0 and processor 4, the next thing we need to know is the cache structure for this particular processors, so this information can be obtained from the directory...sys devices CPU cache, so this particular directory list all the cache memories that are accessible from the CPU 0.

So will go into index 0 and we will look at the type of cache which is present over here and the type is D data which indicates that this particular cache represented at CPU 0 index 0 is a data cache. It has a size of 32 kilobytes as seen over here and we can also get the information about the other processes which are sharing this particular cache memory, so this can be obtained from the file shared CPU list and we see that there are 2 processors, processor 0 and processor 4 which are actually sharing this particular cache, so now if we want to build a

cache cover channel, we could have...and we want to build this cache cover channels between 2 processes and shared information between these 2 processes.

What we would be able to do is we could run one process in the CPU 0 and one process in CPU 4 and make use of the shared cache to exchange information. We can also obtain other details about this particular cache memory for example the ways of associate key is as follow so this is 8 way associative cache and the number of sets that are present is 64 okay and the size of each cache line that is present is as follows, is also 64. Based on all of this information we can next construct a typical address of such a cache.

(Refer Slide Time: 6:18)

So what we did mention was that this particular cache memory had a cache line size of 64 bits which would indicate that the lowest bits of the address, the lowest 6 bits of the address comprises addressing within the cache line size which is of 6 bits. It also had 64 cache sets and therefore in order to address 64 cache sets we need another 6 bits and therefore we have set addressing which has like another 6 bits, these 2 actually give the offset with in a line and these 6 bits provide the address for a particular set. So later on as we would see in the programs we would require to no such information in order to build our cache base cover channel. So now that we know about the cache structure and the processors within this particular machine let us next try to find out how we could actually build a cache base cover channel.

(Refer Slide Time: 7:39)

So what we want to achieve is that we have 2 processes running on the system these processors are called sender and receiver... and receiver and we assume that these 2 processors are completely isolated from each other, you could think of a sender to be a privileged process something like which is run by the system administrator and the receiver process to be something which is an privilege process, so you can also assume that these 2 sender and receiver processes are run by totally different users.

So what we do know about the operating system and the hardware is that there are various mechanisms which are incorporated in both the hardware and the system software that would ensure that this receiver would not directly be able to read or write data from the sender and vice versa, however what we have shown now is that the sender and the receiver can actually use a shared cache memory to transfer information from one process to another, so note that when cache memory is used there is no implicit way to actually...

For one process to read from the cache memory but what we will see in as we have seen in the theory videos before, we could use the execution time for a memory access to pass on information from one process to the other, so let us say that we have a message and assume a binary message of say 1101101 to be sent from the sender to the receiver. What we assume further is that both of these processors that is the sender and the receiver are sharing a common cache memory and running on the same processor for example the processor 0 and processor 4, so what is done in order to create the cache cover channel is that the sender and the receiver 1st agree upon specific set of ports.

So let us call these ports as 10, 20, 30 and 40, so we call 2 these ports as the data ports, so it is called data ports size and 30 and 40 as the control ports. So these ports are prior to actually starting the cover channel, the sender and receiver agree upon these ports and essentially in our program the demonstration that we would see we would use 1 port say port 30 to send the odd bits and port 40 to send the even bits, so for example in this particular case we would have these ports sending the port number 10.

So since we start with a 0^{th} bit this particular bit this thing will be actually sent to this 1 and the next bit which is 1 again would be sent on this port 10, the 3^{rd} bit which is 0 would be sent here with the control line even and the 4^{th} bit which is here would be having the control of 30 and sent on this port, so in this way what would happen is that we are sending bit by bit from the sender to the receiver, so let us see how this program actually works.

(Refer Slide Time: 11:38)

ambika@madnava: /scraccn/ambika/courses/sse/covert_cnannet/protoi	📕 🌱 🔤 📭 🗤) ITTPM 🗶 ambika 🖓					
#endif						
\odot						
/* declare an array as large as the L1 D cache; align it to an	/* declare an array as large as the L1 D cache; align it to an					
offset of 64 bytes to make things simple */						
Unsigned int send_array[DCACHE_SIZE / INI_SIZE]attribute ((aligned(64))));					
/*						
* main takes 4 command line parameters. Each parameter represents a cache	set (0 - 63) and must					
* not overlap. The first two parameters are used for sending bits (0 or 1). The second two					
* parameters are used for controlling the communication (it takes values (even or odd).					
*/						
<pre>pint main(int c,char *argv[]) </pre>						
long int set index A0 = strtol(argv[1] NULL 0): /* This cache	set is used to transfer a 0 to receiver */					
long int set index_A1 = strtol(argv[2], NULL, 0); /* This cache :	set is used to transfer a 1 to receiver */					
<pre>long int set_index_B0 = strtol(argv[3], NULL, 0); /* This set sig</pre>	gnals the receiver that the bit sent is at an					
<pre>long int set_index_BE = strtol(argv[4], NULL, 0); /* This set sig</pre>	gnals the receiver that the bit sent is at an					
P						
long long int A0_0, A0_1, A0_2, A0_3, A0_4, A0_5, A0_6, A0_7; /*	S associate cache lines corresponding to set A					
Long long int A1_0, A1_1, A1_2, A1_3, A1_4, A1_5, A1_6, A1_7; /* 1	B associate cache lines corresponding to set A					
long long int BC_0, BC_1, BC_2, BC_3, BC_4, BC_5, BC_6, BC_7; /* 4	8 associate cache lines corresponding to set B					
101g 101g 11t 0t_0, 0t_1, 0t_2, 0t_3, 0t_4, 0t_5, 0t_0, 0t_1, 7	o associate cache rines corresponding to set b					
<pre>long int send_start = (long long int) send_array; /* address of the</pre>	e send_array */					
long int y_start;						
unsigned long long start, end;						
/* Extracting the bits (14 - 12) of the starting address of the ar	ray.					
These bit represent the associativity */						
<pre>y_start = (send_start >> (SET_BITS + BLOCK_OFFSET_BITS)) & ((1<<ass)</ass </pre>	SOC_BITS)-1) ;					
/* Form the officies to be accorded */						
// Construct the VA for sending hit 0						
A0_0=(((((send_start >> TOT_BITS) << ASSOC_BITS) y_start) <<	<pre>SET_BITS) set_index_A0) << BLOCK_OFFSET_B</pre>					
A0_1=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+1))) << SET_BITS) set_index_A0) << BLOCK_OFFS					
A0_2=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+2)) << SET_BITS) set_index_A0) << BLOCK_OFFS					
A0_3=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+3)) << SET_BITS) set_index_A0) << BLOCK_OFFS					
VISUAL	71,62-69 32%					

ambik	a@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1	🔲 🐗 🖂 🃭 🕕) 1:12 PM 🗜 ambika 🖞
-	These bit represent the associativity */	
	v start = (send start >> (SET RITS + RIOCK OFFSET RITS)) & ((1	< <assoc '<="" rits)-1)="" th=""></assoc>
•	John (() () () () () () () () ()	
	/* Form the offsets to be accessed */	
	// Construct the VA for sending bit 0	
	A0 D=(((((send start >> TOT BITS) << ASSOC BITS) y start) << SET BITS) set index A0) << BLOCK OFFSET
	A0_1=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>(+1)) << SET_BITS) set_index_A0) << BLOCK_OFF</pre>
	A0 2=(((((send start >> TOT BITS) << ASSOC BITS) (v start	(+2)) << SET BITS) set index A0) << BLOCK OFF
100	A0 3=(((((send start >> TOT BITS) << ASSOC BITS) (y start	(+3)) << SET BITS) set index A0) << BLOCK OFF
	A0 4=(((((send start >> TOT BITS) << ASSOC BITS) (y start	(+4)) << SET_BITS) set_index_A0) << BLOCK_OFF
	A0_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+5)) << SET_BITS) set_index_A0) << BLOCK_OFF</pre>
0	A0_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+6)) << SET_BITS) set_index_A0) << BLOCK_OFF</pre>
\sim	A0_7=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+7)) << SET_BITS) set_index_A0) << BLOCK_OFF</pre>
	// Construct the VA for sending bit 1	
(田)	A1_0=(((((send_start >> TOT_BITS) << ASSOC_BITS) y_start) << SET_BITS) set_index_A1) << BLOCK_OFFSET_
	A1_1=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+1)) << SET_BITS) set_index_A1) << BLOCK_OFF</pre>
	<pre>A1_2=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start</pre>	<pre>:+2)) << SET_BITS) set_index_A1) << BLOCK_OFF</pre>
	A1_3=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+3)) << SET_BITS) set_index_A1) << BLOCK_OFF:</pre>
	A1_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+4)) << SET_BITS) set_index_A1) << BLOCK_OFF</pre>
.88.	A1_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+5)) << SET_BITS) set_index_A1) << BLOCK_OFF</pre>
<u> </u>	A1_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+6)) << SET_BITS) set_index_A1) << BLOCK_OFF</pre>
	A1_7=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+7)) << SET_BITS) set_index_A1) << BLOCK_OFF</pre>
Course of the	<pre>// Construct the VA for sending bit the odd bit</pre>	
to the	<pre>B0_0=(((((send_start >> TOT_BITS) << ASSOC_BITS) y_start</pre>) << SET_BITS) set_index_B0) << BLOCK_OFFSET_
SARC	<pre>B0_1=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start</pre>	:+1)) << SET_BITS) set_index_B0) << BLOCK_OFF
	<pre>B0_2=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start</pre>	<pre>:+2)) << SET_BITS) set_index_B0) << BLOCK_OFF</pre>
	B0_3=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+3)) << SET_BITS) set_index_B0) << BLOCK_OFF:</pre>
	B0_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+4)) << SET_BITS) set_index_B0) << BLOCK_OFF:</pre>
	B0_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	<pre>:+5)) << SET_BITS) set_index_B0) << BLOCK_OFF</pre>
	B0_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	(+0)) << SET_BITS) set_index_B0) << BLOCK_OFF
	B0_7=(((((send_start >> TOT_BITS Q << ASSOC_BITS) (y_start	<pre>(+7)) << SET_BITS) set_index_B0) << BLOCK_OFF</pre>
	11 Construct the VA for conding bit the own bit	
	77 Construct the VA for sending bit the even bit	A SET DITE) set index DE) as DLOCK OFFEFT
	DE_0-(((((send_start >> TOT_BITS) << ASSOC_BITS) y_start) < SET_DITS) Set_Index_BE) << BLOCK_OFFSET_
	DE_1-((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	(1)) of SET RITS) set index BE) of RLOCK OFF.
	BE 2=((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start	(12)) << SET RITS) set index BE) << BLOCK OFF.
	BE A=(((((send_start >> TOT_BITS)) << ASSOC_BITS) (y_start	(+4)) << SET RITS) set index_BE) << BLOCK_OFF
100		118 35_42 53%
- 488		110,35-42 35%

ambika@madhava: /scratch/ambika/courses/SSE/covert_channel/proto1	🗆 🎩 🐖 🖾 江 🕪) 1:12 PM 👤 ambika 🕸
A1_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+5)) < A1_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+6)) <	<pre>< SET_BITS) set_index_A1) << BLOCK_OFFS < SET BITS) set_index_A1) << BLOCK_OFFS</pre>
A1_7=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+7)) <	< SET_BITS) set_index_A1) << BLOCK_OFFS
// Construct the VA for sending bit the odd bit	
B0_0=(((((send_start >> TOT_BITS) << ASSOC_BITS) y_start) << SE	T_BITS) set_index_BO) << BLOCK_OFFSET_B
BO_1=(((((send_start >> IOI_BITS) << ASSUC_BITS) (y_start+1)) <	< SET_BITS) set_index_B0) << BLOCK_OFFS
B0_2=(((((send_start >> IOI_BIIS) << ASSUC_BIIS) (y_start+2)) <	< SET_BITS) set_index_B0) << BLOCK_OFFS
B0_3=(((((send_start >> TOT_DITS) << ASSUC_BITS) (y_start s)) <	< SET_BITS) Set_Index_B0) << BLOCK_OFFS
$B0_{4} = \left(\left(\left(\left(send_{5}tart \rightarrow t0\right)BTS\right) < SSO(_BTS)\right) (y_{5}tart + y_{6})\right)$	< SET_BITS) Set_Index_B0) << BLOCK_OFFS
B0_3-(((((serio_start >> tot_Bits) << Assoc_Bits) (y_start b))	< SET_BITS) Set_Index_B0) << BLOCK_OFFS
$B0_0 = (((((send_start > 10_0 Bits)) < Assoc_Bits)) (y_start = 0))$	< SET_BITS) set_index_B0) << BLOCK_OFFS
B0_/=((((Send_Start >> TOT_BITS)) << ASSOC_BITS) (y_start+7)) <	< SEI_BITS) Set_Index_B0) << BLOCK_OFFS
// Construct the VA for sending bit the even bit	
BE 0=(((((send start >> TOT BITS) << ASSOC BITS) y start) << SE	T BITS) set index BE) << BLOCK OFFSET B
BE 1=(((((send start >> TOT BITS) << ASSOC BITS) (y start+1)) <	< SET BITS) set index BE) << BLOCK OFFS
BE 2=(((((send start >> TOT BITS) << ASSOC BITS) (y start+2)) <	< SET BITS) set index BE) << BLOCK OFFS
BE 3=(((((send start >> TOT BITS) << ASSOC BITS) (y start+3)) <	< SET BITS) set index BE) << BLOCK OFFS
<pre>BE_4=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+4)) <</pre>	< SET_BITS) set_index_BE) << BLOCK_OFFS
<pre>BE_5=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+5)) <</pre>	< SET_BITS) set_index_BE) << BLOCK_OFFS
<pre>BE_6=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+6)) <</pre>	< SET_BITS) set_index_BE) << BLOCK_OFFS
<pre>BE_7=(((((send_start >> TOT_BITS) << ASSOC_BITS) (y_start+7)) <</pre>	< SET_BITS) set_index_BE) << BLOCK_OFFS
unsigned long long i=0 , k=0;	
<pre>float time = 0;</pre>	
unsigned int data[DATASIZE]={0,1,1,0, 1, 1, 0, 0, 0, 1};	
long long int tA_0 , tA_1 , tA_2, tA_3, tA_4, tA_5, tA_6, tA_7;	
101g 101g 111 (0_0 , (0_1 , (0_2, (0_3, (0_4, (0_5, (0_0, (0_7,	
<pre>printf("Starting to send\n");</pre>	
<pre>while(k < DATASIZE)</pre>	
/* set tA * to the hit to be sent (0 or 1) */	
printf("%d : " k):	
if(data[k] == 0) f	
ta = 0 $ta = 0$ $ta = 1$ $ta = 0$ t	
tA = A0 4; $tA = A0 5$; $tA = A0 5$; $tA = A0 5$; $tA = A0 7$;	
printf("Sender : Tx 0 "):	
VISUAL	118.35-42 67%
	110,05-42 078

ambika@madhava:/scratch/ambika/courses/SSE/covert_channel/proto1 🛛 📑 🐐	🖾 👣 🜒) 1:12 PM 💄	ambika 🔱
unsigned long long i=0, k=0; float time = 0; insigned int data[0ATA512E]=(0,1,1,0,1,1,0,0,0,0,1); long long int tA_0, tA_1, tA_2, tA_3, tA_4, tA_5, tA_5, tA_7; long long int tB_0, tB_1, tB_2, tB_3, tB_4, tB_5, tB_6, tB_7;		
<pre>printf("Starting to send\n"); while(k < DATASIZE) { </pre>		
<pre></pre>		
Image: Characterized and the second		
<pre>/* set tB_* to the bit to the control (E or 0 bit) */ if(k & 1) { tB_0 = B0_0; tB_1 = B0_1; tB_2 = B0_2; tB_3 = B0_3; tB_4 = B0_4; tB_5 = B0_5; tB_6 = B0_6; tB_7 = B0_7; printf("Bit : odd \n"); } also 4</pre>		
<pre>tB_0 = 0E_0; tB_1 = 0E_1; tB_2 = 0E_2; tB_3 = 0E_3; tB_4 = 0E_4; tB_5 = 0E_5; tB_6 = 0E_6; tB_7 = 0E_7; printf("Bit : even \n");</pre>		
/* Note the 128ULL. This is required because the sender needs to be made much slower than the receiver */	132,58-6	i5 82%

So over here we have 2 completely different programs one is known as the receiver.c the other one is the sender.c will also be sharing these programs with you, so you can actually try this out on your machines. So the 1st thing we do is do a make clean and make and we obtain 2 executables one is a sender and the 2nd is the receiver. So what we will shows is that it is possible to actually communicate information from the sender through the receiver through the shared cache, so before going into details about how this program is actually working we will just look at the demonstration first.

The 1st thing to do is to start the receiver and we need to ensure that the cache is shared and as we have seen earlier in this video the processor 0 and the processor 4 are essentially sharing the same CPU core thus we need to ensure that both these processors the receiver and the server are executing on exactly this core, so we can do this by the task that command taskset minus C 0.

Slash receiver and we provided the agreed-upon ports over here, so 10, 20, 30, 40 so recollect that we define the ports in the cache cover channel as essentially the different cache sets, so there were 64 cache sets in our L1 data cache and we have decided to choose these 4 cache sets, cache set 10, 20, 30 and 44 for our communication. 2 of these cache sets 10 and 20 are used for transferring data while the cache set 30 and 40 are used for control. So let us start the receiver and in a totally isolated environment start the server as follows, so we need to ensure that the server is running on the CPU 4.

So we run the tasks set specify the CPU that we want to run in this case it is 4 with exactly the same agreed-upon ports 10, 20, 30 and 40 so what is happening now is that the sender is beginning to send a 0th bit it is at a time even location and we see that this sender is essentially through the cache able to communicate to the receiver, so apparently this particular 0 bit has been received over here by the receiver. The next bit which is sent by the sender is 1, so this is the odd bit and we see that the receiver has received this particular weight, so let us look for some more time to see more bits being transmitted.

The 3^{rd} bit being send is 1 again so this is an even bit and we will see that after sometime the receiver has indeed received this bit as well, so the bit number 2 is the even bit got a value of 1, so we can just wait for may be a minute or so to see more bits being transmitted, so this is an extremely slow process but what it signifies is that these 2 process sender and receiver in spite of the heavy protection provided by the operating system and hardware have been able to actually communicate with each other, so this was on 2 regular processes but we could also demonstrate this and various other infrastructures for example even with the trusted execution environment such as the SGX and (())(15:45) that we have studied earlier in this lecture such kind of cover channels can be done from a trusted environment to the untrusted appointment.

So one thing that de-markets a particular cover channel is the rate at which data can be transferred from the sender to the receiver, so over here as we see it is an extremely slow process, so typically the units would be something like bits per second and as we see over here the score is not very optimised. This seems to be much less than 1 bit per second but nevertheless we see that attackers are quite motivated and the rate of transmission is not a very critical issue for attackers as long as the information can be obtained on the other side.

Now that we have seen these programs work, so let us look a little more in detail about what is happening inside this will, so let us stop the receiver and the server. Now one thing for you think about is that recollect that...or if you just go back on the video you will see that there are some bits that gets received even though the sender has not yet started, so one thing for you to think about is why such a thing has actually happened.

Okay so let us go into the code we will open our editor and look at the sender code first okay so this code has been written by Gnanambikai who is a Ph.D. student at IIT Madras, so important thing showing here is this particular time period and we will prefer to this later on in this particular code and what we see is that various attributes about the cache memory present in the system at least the cache memory that has been targeted for this cover channel has been hashed defined over here for example the de cache size of 32 kilobytes. Number of set bits which is 6 over here because we have 64 different sets.

The offset bids within a cache line is again 6 bits because each cache line is of 64 bits and something known as total bits which represents the associated bits, set bits and block address bits. One thing what was important over here was that the associativity of the cache memory, so recollect that this particular memory is an 8 way associative cache and therefore in order to create conflict with a particular set there should be 8 addresses following on the same cache set.

The 8 addresses should be designed in such a way or should be crafted in such a way such that each of them feels a particular way in a cache corresponding to that set. So the arguments that are provided over here that is the control ports and the data ports that is 10, 20, 30 and 40 are taken from the command line and set into these various integers set index A0, A1, B0 and B1, so A0 and A1 are used to transfer 0 and 1 while B0 and the BE are used for the control ports and where they are used to transfer the odd bits and the even bits respectively.

The next thing we do is we craft different addresses, note that we require 4 sets of addresses, each is a collection of 8 different addresses, so this for example A00 to A07 is an 8 way corresponds to the 8 way associative cache. So I not go into details about this but giving the fact that what we discussed earlier in this video, you can see how the 8 addresses are crafted, so that all of them would access exactly the same set. We assume policy such as the least recently used to be implemented in the cache and assume the fact that all of these 8 addresses would fall in the same cache sets but in different ways of the cache.

So similarly we have A0, A1 addresses being crafted B0 addresses and the BE addresses being crafted. The next thing would be quite interesting so we would look at how the data is being transmitted. We have defined the data to be transmitted from the sender to the receiver as follows, so the data comprises of this binary bits 011 and so on and what we do over here is that we start to craft memory and start to actually send them from the sender to the receiver, so important in this particular thing is this particular fall loop.

So each iteration is run for epoch times the time period, this is to ensure that the receiver which is running (())(20:55) from the sender process has sufficient amount of time to actually lead this information, so we look at how the epoch is defined which is hash defined to 128 over here as seen over here and the time period is 2 power 24 which means that these loops are run for a total of 2 power 24 time 128 things so this would be long enough to procure the receiver sufficient amount of time to actually detect bits being transmitted. The next thing we do is create memory accesses to various locations.

Now tA underscore 0 and tB underscore 0 correspond to load and store operations to these addresses corresponding to the data being transmitted. Recollect that TB are used in order to control the data and specific odd or even bits being transmitted and tA I used to send 0s and 1s respectively, so essentially this is the communication which is happening by the sender, the sender is making memory accesses to these particular memory addresses. So each time the sender actually make such a memory access, the data if it is not present in the cache would be fetched from a lower cache in this case the L2 and L3 cache and stored in the L1 cache as well as stored in a register pointed to buy this.

Now what happens on the receiver side is that the receiver also runs a similar loop as shown over here but the receiver would also time that particular loop. Now due to the conflicts that arise due to the common cache and the agreed-upon cache sets, the conflicts may actually cause certain memory accesses to be faster and certain memory access to be slower, so the increase time would indicate that there is something being transmitted by the sender on that particular cache set and therefore a miss has occurred the data has to be retrieved from the lower cache or from the de run. Thank you.