Information Security - 5 - Secure Systems Engineering
Professor Chester Rebeiro
Indian Institute of Technology, Madras
Demo- Cache timing attack on T-table implementation of AES

Hello and welcome to this demonstration in the course for secure systems engineering. In the
previous demonstration what we have seen was we had use the shared cache memory
between 2 processes for communication we had shown how a sender and a receiver could
actually exchange messages through the shared cache memory. Essentially the load installed
operation to specify memory location could cause conflicts in the cache memory resulting in

a variation in the execution time.

This variation in execution time was used to actually transfer information from one process to
another. In this video we will take it one step further, we will show how cache memories can
be also used to break cryptographic ciphers, we will demonstrate on a cipher like AES about
how a few bits of the secret key can be recovered from the ciphers that is making it possible
for an attack, so before we go into the attack we will actually just take a brief introduction on
AES and we will see what exactly happens, so the introduction is just about sufficient to
understand this specific attack, so AES as we know is a symmetric key cipher it is one of the

most popular symmetric key ciphers and it is applied in varieties of different application.
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The AES actually looks something like this... as a block diagram as a block it takes an input
which is a plain text and it gives you a cipher text C. Now the plain text essentially is

operated on by this AES operation, there is a secret key that is also involved and therefore the



cipher text which is obtained as the output of AES is a function of this plain text over here
and the secret key. Now as we have seen in the other video lectures an attacker may actually
know the plain text with a corresponding cipher text and he may also know the
implementation which is used in AES. What is kept secret is this key, now a typical AES
algorithm has a key cipher of 128 bits which means that there are 2 power 128 possible key

ideas.

Breaking such a strong cipher would require several centuries of computing power
constrained the amount of computing power that is available these days to actually break such
a cipher. What people now show is that if an attacker is able to actually choose plain text or
monitor the plain text that are being encrypted by AES and also monitor the execution time of
AES then this huge pace of 2 power 128 can be reduced quite drastically. What the attacker

would leverage is the timing behaviour of this AES implementation.

Now to understand what would happen we have to take a look at the AES implementation
and a little more in detail about the AES algorithm, so 1* of all the plain text which is also of
128 bits is split into 16 bytes P naught to P15, once these bytes go into the cipher or during
the implementation is that these bytes get XOR with 16 bytes of the secret key, so we will
have like K 15 over here which is the 15™ byte of the secret key and similarly we have K1 K

naught and so on.

Now the next operation in the cipher is a lookup table, in the next operation in this
implementation is memory access to a specific lookup table, this lookup table is known as the
T table and essentially is defined as an integer array of 256 elements and would have the size
of 1024 bytes, so we have a table over here like this and so on. This is about all that require to
understand this cache timing attack, this specific implementation that we will use in this
demonstration actually uses 5 T tables TO to T4 out of these 5 tables the 1% 4 are important to
us so these 4 tables are TO to T3 the first accesses to the tables is as follows, so we have like
16 bytes PO to P15 and 16 bytes of key which are XOR with their respective plain text bytes

and then there are table accesses which are done as follows.

So we have TO which gets XOR with PO XOR with KO then we have similarly T1 which is
P1 XOR with K1 so what is happening over here is that we have this XOR operations which
we have shown in the diagram and then there is based on the result of this XOR there is a

lookup in this table at an index specified by P naught XOR K naught. Similarly there is the



table T2 which gets acted upon which gets looked up at the location P2 XOR K2 and T3
which is accessed at the location P3 XOR K3.

Now important for us are the next 4 accesses to the tables by the plain text P4 to P7 so these
are done at locations TO P4 XOR with K4, T1 gets accesses P5S XOR with K5. T2 accesses P6
XOR K6 and so on, so let us look at these tables look ups from a cache perspective, so
initially let us just focus on this TO table accesses that is these 2 table accesses. So initially we
have this processor and as we know that there is a cache memory which caches some of the

recently used data and then we have the large lower cache memory of the data.

So this is the cache memory, so these tables TO to T3 are at the start of execution available in
the DRAM, so now consider the axis to this tables at locations P naught XOR K naught and
P4 XOR K4, so during the 1* access based on this index TO XOR KO0 some part of this table
is loaded into the cache memory. Now during the 2™ access to the same table at the index P4
XOR K4 there are 2 things that can occur. Either you can get a cache hit which would mean
that this index T4 XOR K4 is in the vicinity or is closed to the index PO XOR KO, in such a
case the processor would actually find the relevant information corresponding to those parts
of the table and therefore would not require to actually go to the lower memories like that

DRAM or the lower level cache memory.

So what we are saying is that if we just want to write it in a more mathematical sense we say
that if PO XOR KO is approximately equal to P4 XOR K4 then we get a cache hit stop on the
other hand if PO XOR KO is not equal to P4 XOR K4 then we get a cache miss, so notice that
we have used the word approximately and given it this approximate signal because of the
reason that PO XOR KO0 may fall in the same cache line as P4 XOR K4 in which case a cache
hit could actually happen, so thus the 2™ operation P4 XOR K4 could result either in a cache
hit or a cache miss, so what we have is this particular lookups either has a cache hit or a

cache miss.

Now let us assume that there is a cache hit and for simplicity (())(10:23) this approximation
with an equality thus we have PO XOR KO is equal to P4 XOR K4. Now if we just rearrange
the terms we have like PO XOR would be 4 to be equal to KO XOR with K4. Now if the
attacker actually knows the plain text bytes PO and P4 it would indicate that he knows the
XOR of the key bits KO XOR K4. What this means is that the attacker has gained some
information about secret key if you look at this in other way KO we know is a byte therefore

it has like 256 possible values from 0 to 255 and K4 is another independent byte which has



also 0 to 255 possible values, so without actually running this implementation if the attacker

has to guess the values of KO and K4 there are 512 different options.

On the other hand if the attacker runs the implementation and measures the execution time
and identify cache hits and cache misses is uncertainty reduces from 512 to less than 256
without running the implementation if the attacker has to guess about K0 and K4 you see that
there are 2 power 16 possibilities 2 power 8 for KO and another 2 power 8 for K4 so together
there would be like 2 power 16 possibilities, on the other hand if the attacker actually runs
this implementation and is able to distinguish between a cache hit and cache miss or say by

the timing channels that are present and then this reduces from 2 power 16 to 2 power 8.

Essentially what would be required is that the attacker guesses a value of KO and then for that
particular guess he can then compute the value K4 given this particular equation, so this is
essentially the idea of this attack. Now this attack works very well with the older systems like
the Intel, Core 2 Duo and so on but with modern systems like the 17 like we are going to have
here as well as the i3 and 15 processors the attacks are not very successful. Nevertheless it can
still be used to reduce the uncertainty about the key from 128 bits to something much more

lower.
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s [x].

=S [x].
S [x].

= si[x].
Si[x].[0b, Oe, 09, 0d];
Si[x].[0d, Ob, Oe, 09];
Si[x].[09, 0d, Ob, Oe];
si[x].[o01, 01, 01, 01];

static const u32 Te0[256] _ attribute_ ((aligned(0x1000)))= {
0xc66363a5U, 0xf87c7¢c84U, Oxee777799U, 0xf67b7bsdu,
oxfff2f20du, 0xd66b6bbdu, Oxde6f6fbiU, 0x91c5¢554U,
0x60303050U, 0x02010103U, Oxce6767a9u, 0x562b2b7du,
oxe7fefe19U, 0xb5d7d762U, Ox4dababe6U, Oxec76769au,
ox8fcacadsu, 0x1f82829du, 0x89c9c940U, Oxfa7d7ds7u,
oxeffafalsu, 0xb25959ebU, 0x8e4747c9u, Oxfbfofoobu,
Ox4ladadecu, Oxbyda67u, Oxsfa2a2fdu, Oxasafafeau,
0x239c9cbfu, 0x53a4aaf7u, 0xed4727296U, 0x9bcOcOSbU,
0x75b7b7c2u, Oxelfdfdicu, 0x3d9393aeu, Ox4c26266au,
0x6c36365aU, Ox7e3f3faiu, oxf5f7f702u, Ox83ccccafu,
0x6834345cU, Ox51a5as5f4u, OxdieSeS34u, oxfofifiosu,
0xe2717193U, Oxabd8d873U, 0x62313153U, Ox2a15153fu,
0x0804040cU, 0x95c7c752U, 0x46232365U, Ox9dc3c3sel,
0x30181828U, 0x379696a1U, 0x0a05050fU, Ox2f9agabsu,
0x0e070709U, 0x24121236U, 0x1b80809bU, Oxdfe2e23dU,
Oxcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, Oxea75759fU,
0x1209091bU, 0x1d83839eU, 0x582c2c74U, Ox34lalazel,
0x361b1b2dU, Oxdc6e6eb2u, Oxb4SaSaeeU, 0x5ba0a0fbu,
0xa45252f6U, 0x763b3bddu, 0xb7d6d661U, Ox7db3b3cel,
0x5220297bU, Oxdde3e33eU, 0x5e2f2f71U, 0x13848497U,
0xa65353f5U, 0xb9d1d168U, 0x00000000U, Oxcleded2cU,
0x40202060U, Oxe3fcfclfU, 0x79b1b1c8U, Oxb65bSbedu,
Oxd46agabel, 0x8dcbcbd6U, 0x67bebedolU, 0x7239394bU,
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ox6fbabadsu, §xf0787888U, 0x4a25256fU, Ox5c2e2e72U,
0x381c1c24U, 0x5726a6f1U, 0x73babac7u, 0x97c6c651U,
Oxcbese823u, Oxaldddd7cu, Oxe874749cu, Ox3e1fif21u,
0x964babddu, 0x61bdbddcu, 0x0d8bsbs6u, 0x0fsagassu,
0xe0707090U, Ox7c3e3ed2u, 0x71bSb5cau, Oxcc6666aau,
0x904848d8U, 0x06030305U, 0xf7f6f601U, Ox1cOeoei2u,
0xc26161a3U, 0x6a35355fU, Oxae5757f9U, 0x69b9badou,
0x17868691U, 0x99c1c158U, Ox3ald1d27U, 0x279e9ebdu,
Oxd9ele138U, Oxebf8f813U, 0x2b9898b3U, 0x22111133U,
0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,
0x2d9b9bb6U, Ox3clele22U, 0x15878792U, Oxc9e9e920U,
0x87ceceddU, 0xaa5555ffU, 0x50282878U, OxaSdfdf7au,
0x038c8c8fU, 0x59aiaifsu, 0x09898980U, 0x1a0dodi7u,
0x65bfbfdal, Oxd7e6e631U, 0x844242c6U, 0xd06868b8U,
0x824141c3U, 0x299999b0U, 0x5a2d2d77U, Ox1e0fofiiu,
0x7bb0bOcbU, 0xaB5454fcU, Ox6dbbbbd6U, 0x2c16163al,
}:
static const u32 Tel[256] _attribute__((aligned(0x1000))) = {
0xa5c66363U, 0xB4387c7cU, 0x99ee7777U, 0xBdf67b7bu,
0x0dfff2f2U, 0xbdd66b6bU, 0xblde6f6fU, 0x5491c5c5U,
0x50603030U, 0x03020101U, 0xadce6767U, 0x7d562b2bu,
0x19e7fefel, 0x62b5d7d7U, OxeG4dababU, 0x9aec7676U,
Ox458fcacal, 0x9d1f8282U, 0x4089c9coU, 0x87fa7d7du,
Ox15effafal, 0xebb25959U, 0xc98ed747U, 0x0bfbfofou,
Oxec4ladadU, 0x67b3d4d4u, Oxfd5fa2a2u, OxeadSafafu,
0xbf239c9cU, 0xf753a4adu, 0x96e47272V, 0x5b9bcOcOU,
0xc275b7b7U, Ox1celfdfdu, Oxae3d9393U, Ox6adc2626U,
0x5a6c3636U, 0x417e3f3fu, 0x02f5f7f7U, Ox4f83ccccU,
0x5c683434U, 0xf451a5a5U, Ox34dleSesu, 0xo08fofifiu,
0x93e27171U, 0x73abd8dsU, 0x53623131U, 0x3f2a1515U,
0x0c080404U, 0x5295c7c7U, 0x65462323U, Ox5e9dc3c3u,
0x28301818U, 0xa1379696U, 0x0f0a0505U, Oxb52f9agau,
0x090e0707U, 0x36241212U, 0x9b1b8080U, Ox3ddfe2e2u,
Ox26cdebebU, 0x694e2727U, Oxcd7fb2b2u, 0x9fea7575U,
0x1b120909U, 0x9e1d8383U, 0x74582c2cU, Ox2e341alau,
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- s Oxd56fbabaU, 0x88f07878U, 0x6f4a2525U, Ox725c2e2el,
0x24381c1cU, 0xf157a6abU, Oxc773bdbdU, 0x5197c6c6U,

0x23cbe8e8U, Ox7calddddy, 0x9ce87474U, 0x213e1f1fu,

0xdd964babU, Oxdc61bdbdy, 0x860d8bsbU, 0x850f8asal,

0x90e07070U, 0x427c3e3el, Oxc471bSbSU, Oxaacc6666U,

0xd8904848U, 0x05060303U, 0x01f7f6f6U, Ox121cOe0el,

0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9ILOU,

0x91178686U, 0x5899c1c1U, 0x273ald1dU, 0xb9279edel,

0x38d%elelU, Ox13ebf8f8U, 0xb32b9898U, 0x33221111U,

0xbbd26969U, 0x70a9d9d9U, 0x89078e8el, 0xa7339494U,

— 0xb62d9bobU, 0x223clelel, 0x92158787U, 0x20c9egedl,
28 0x4987cecel, Oxffaa5555U, 0x78502828U, Ox7aaSdfdfu,
] 0x8f038c8cU, 0xf859alaly, 0x80098989U, Ox171a0d0du,
0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, OxbBA068GSU,

0xc3824141U, 0xb0299999U, 0x775a2d2dU, Ox111e0f0fu,

0xcb7bb0bOU, Oxfca85454U, 0xd66dbbbbU, 0x3a2c1616U,

b

static const u32 Te2[256] _ attribute_ ((aligned(0x1000))) = {
0x63a5c663U, 0x7@f87cU, 0x7799ee77U, 0x7b8df67bU,
0xf20dfff2u, 0x6bbdd66bu, 0x6fblde6fu, 0xc55491c5U,
0x30506030U, 0x01030201U, 0x67a9¢ce67U, 0x2b7d562bU,
oxfe19e7feu, 0xd762b5d7U, Oxabe64dabu, 0x769aec76U,
Oxcad58fcal, 0x829d1f82U, 0xc94089coU, 0x7d87fa7du,
oxfa15effau, 0x59ebb259U, 0x47c98ed7u, 0xf00bfbfou,
Oxadec41adu, 0xd467b3dau, Oxa2fdsfa2u, Oxafeaasafu,
0x9¢cbf239¢cU, 0xaaf753a4u, 0x7296e472U, 0xc05b9bcoU,
0xb7¢275b7U, Oxfdice1fdu, 0x93ae3d93U, 0x266a4c26U,
0x36536¢36U, 0x3f417e3fu, 0xf702f5f7u, Oxccafsiccy,
0x345c6834U, 0xas5fas1asu, OxeS34dlesu, 0xf108fofiu,
0x7193e271U, 0xd873abdsu, 0x31536231U, 0x153f2a15U,
0x040c0804U, 0xC75295C7U, 0x23654623U, 0xc35e9dc3U,
0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9abs2f9au,
0x07090e07U, 0x12362412U, 0x809b1b80U, Oxe23ddfe2u,
Oxeb26cdebu, 0x27694e27U, Oxb2cd7fb2u, 0x759fea7su,
0x091b1209U, 0x839e1d83U, 0x2c74582cU, Ox1a2e34lau,
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ambika@madhava: /scratch/ambika/timingaes/lib
Oxbads6fbau, §x78881078U, 0x256f4a25U, Ox2e725c2eU,
0x1c24381cU, 0xa6f157a6U, 0xbac773b4U, 0xc65197¢6U,
0Oxe823cbesU, 0xdd7calddyu, 0x749ce874U, 0x1213elfu,
0x4bdd964bU, 0xbddc61bdU, 0x8bB60JBLU, 0x8a850f8aU,
0x7090¢070U, 0x3e427c3eU, 0xbSc471bSU, 0x66aacc66U,
0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eu,
0x6123¢261U, 0x355f6235U, 0x57f9ae57U, 0xb9d069bIV,
0x86911786U, 0xC15899¢1U, 0x1d273a1dy, Ox9eb9279eu,
Oxe138d9e1U, 0xf813ebfsu, 0x98b32b98U, 0x11332211U,
0x69bbd269U, 0xd970a9d9U, 0x8eB9078eU, 0x94a73394U,
0x9bb62d9bU, Ox18223c1eU, 0x87921587U, 0xe920c9e9U,
Oxcea9s7cey, 0x55ffaassu, 0x28785028U, Oxdf7aasdfu,
0x8c8f038cU, 0xa1f859a1U, 0x89B009BIU, 0x0d171a0du,
0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8A068U,
0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU,
0xb0cb7bb0U, 0x54fcaB54u, Oxbbd6edbbu, 0x163a2c16U,

mEladﬂ@§

I
static const u32 Te3[256] _ attribute ((aligned(0x1000))) = {

0x6363a5c6U, Ox7c/c84f8U, 0x777799eeu, Ox7b7b8dféu,
0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fbideU, Oxc5c55491U,
0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U,
oOxfefe19e7U, 0xd7d762b5U, Oxababe64du, 0x76769aecu,
Oxcacad58fU, 0x82829d11U, 0xcIc94089U, Ox7d7d87fal,
oxfafaiSefu, 0x5959ebb2u, 0x4747c98eU, OxfOf00bTbU,
OxadadecaU, 0xdddd67b3U, 0xa2a2fd5fu, Oxafafeadsu,
0x9c9chf23U, Oxadadf753U, 0x727296edU, OxcOcO5bIbU,
0xb7b7c275U, Oxfdfdicelu, 0x9393ae3du, Ox26266adcU,
0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, Oxccecafsu,
0x34345c68U, OxaSa5f4s1U, OxeSe534diu, Oxfif108fou,
0x717193e2U, 0xd8d873abu, 0x31315362U, Ox15153f2aU,
0x04040C08U, Oxc7c75295U, 0x23236546U, Oxc3c35e9du,
0x18182830U, 0x9696a137U, 0x05050f0al, 0x9a9abs2fu,
0x0707090eU, 0x12123624U, 0x80809b1bU, Oxe2e23ddfU,
Oxebeb26cdU, 0x2727694eU, Oxb2b2cd7fU, 0x75759feal,
239,18
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0x4141¢3820, ox2d2d775au, oxofofiiieu,
0xb0b0cb7bu, 0x5454fcasu, Oxbbbbd66du, 0x16163a2cu,

const u32 Tea[256] = {
0x63636363U, Ox7c7c7c7cU, 0x77777777U, 0x7b7b7b7bu,
oxf2f2f2f2u, 0x6b6b6b6bu, 0x6f6f6f6fu, OxcScScScsu,
0x30303030U, 0x01010101U, 0x67676767U, Ox2b2b2b2bU,
oxfefefefeu, 0xd7d7d7d7U, Oxababababu, 0x76767676U,
OxcacacacaU, 0x82828282U, 0xc9c9c9c9u, 0x7d7d7d7du,
oxfafafafal, 0x59595950U, 0x47474747U, Oxfofofofou,

i j, 0 U, Oxafafafafu,
0x9c9c9cocl, Oxadadadady, 0x72727272U, 0xcOcOcOCOU,
0xb7b7b7b7U, Oxfdfdfdfdu, 0x93939393U, 0x26262626U,
0x36363636U, 0x3f3f3f3fU, 0xf7f7f7f7U, Oxccececcel,
0x34343434U, OxaSa5a5aSu, OxeSeSeSeSU, Oxf1f1fifiu,
0x71717171U, Oxd8d8d8dsU, 0x31313131U, 0x15151515U,
0x04040404U, Oxc7c7c7c7U, 0x23232323U, Oxc3e3c3c3U,
0x18181818U, ), , ),
0x07070707U, 0x12\21212U, 0x80808080U, OxeZe2e2e2U,
OxebebebebU, 0x27272727U, 0xb2b2b2b2U, 0x75757575U,
0x09090909U, 0x83838383U, Ox2c2c2c2cU, Oxlalalatal,
0x1b1b1b1bU, Ox6e6ebeGel, Ox5aSa5aSaU, Oxa0a0a0aOU,
0x52525252U, 3 ¥ b5
0x20202929U, Oxe3e3e3e3u, Ox2f2f2f2fU, 0x84848484U,
0x53535353U, Oxd1d1d1d1U, 0x00000000U, Oxededededu,
0x20202020U, Oxfcfcfcfcy, Oxb1b1b1b1U, 0x5bSbSbSbu,

. Oxcbcbebebu, 3 u,
Oxdadadadal, OxdcdcdcdcU, 0x58585858U, OxcfcfcfcfU,
0xd0d0dodou, OxefefefefU, OxaaaaaaaaU, Oxfbfbfbfbu,
0x43434343U, ), 0x33333333U, 0,
0x454545450, 0xf9f9fofou, 0x02020202U, Ox7f7f7f7fu,
0x50505050U, Ox3c3c3c3cU, 0x9f9f9fofu, Oxasasagasu,
0x51515151U, Oxa3a3a3a3u, 0x40404040U, Ox8f8f8f8fU,
o i , 0x38383838U, Oxf5f5fSfS5U,
OxbcbebebeU, 0xb6b6b6b6U, OxdadadadaU, 0x21212121U,
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L T
(i=0; i<256; ++i)i7(hc3[i] == 0) noaccess++;
desktop files nmisses += 256 - noaccess;

memset(hco, 0, (hco));
memset(hc1, 0, (he1));
memset(hc2, 0 (he2));
memset(he3, 0, (he3)):
nmisses;

}

#else

#define peek(a,b,c,d)

#define printnmisses()

#endi f

v

* Encrypt a single block

* in and out can overlap

*/

void AES_encrypt(const unsigned char *in, unsigned char *uuk{l
const AES_KEY *kfy) {

const u32 *rk;
u32's0}s1, s2, s3h t0, t1, t2, t3;
#ifndef FULL_UNROLL
int r;
#endif /* ?FULL_UNROLL */

assert(in && out && key);
rk = (u32 *)key->rd_key;

map byte array block to cipher state
and add initial round key

s0 = GETU32(in ) A rk[0];
s1 = GETU32(in rkl1];
52 = GETU32(in rki21;
53 = GETU32(in rki31;
#ifdef FULL_UNROLL
939,20-34
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void AES_encrypt(const ur

1signed char *in, unsigned char *out,
const AES_KEY *key) {

const u32 *rk;
UER Sy Sy S S5, W, Bl 2 G5
ndef FULL_UNROLL
nt r;
?FULL_UNROLL */
assert(in && out && key);
rk = (u32 *)key->rd_key;

* map byte array block to cipher state
nd add initial round key

z:

t0 = TeO[sO >> 24] A Tel[(s1 >> 16) & Oxff] A Te2[(s2 >> 8) & Oxff] A Te3[s3 & Oxff] A rk[ 4];
t1 = TeO[s1 >> 24] A Tel[(s2 >> 16) & Oxff] A Te2[(s3 >> 8) & Oxff] A Te3[s0 & Oxff] A rk[ 51;
t2 = TeO[s2 >> 24] A Tel[(s3 >> 16) & Oxff] A Te2[(s0 >> 8) & Oxff] A Te3[s1 & Oxff] A rk[ 6];
t3 = TeO[s3 >> 24] A Te1[(s0 >> 16) & Oxff] A Te2[(s1 >> 8) & Oxff] A Te3[s2 & 0xff] A rk( 7];
peek(s0, s1, s2, s3);

7* round 2: */

S0 = TeO[t0 >> 24] A Tel[(t1 >> 16) & Oxff]
s1 = TeO[t1 >> 24] A Tel[(t2 >> 16) & Oxff]
s2 = TeO[t2 >> 24] A Tel[(t3 >> 16) & Oxff]
$3 = TeO[t3 >> 24] A Tel[(t0 >> 16) & 0xff]
peek(t0, t1, t2, t3);

/% round 3: */

t0 = TeO[sO >> 24] A Tel[(s1 >> 16) & Oxff] A Te2[(s2 >> 8) & Oxff] A Te3[s3 & O0xff] A rk(12];

Te2[(t2 >> 8) & Oxff] A Te3[t3 & Oxff] A rk[ 8];
Te2[(t3 >> 8) & Oxff] A Te3[t0 & Oxff] A rk[ 9];
Te2[(t0 >> 8) & Oxff] A Te3[t1 & Oxff] A rk[10];
Te2[(t1 >> 8) & Oxff] A Te3[t2 & Oxff] A rk[11];

>> 5> >

t1 = TeO(s1 >> 24] A Tel[(s2 >> 16) & Oxff] A Te2[(s3 >> 8) & Oxff] A Te3[s0 & 0xff] A rk[13];
t2 = TeO[s2 >> 24] A Tel[(s3 >> 16) & 0xff] A Te2[(s0 >> 8) & Oxff] A Te3[s1 & 0xff] A rk[14];
t3 = TeO[(s3 >> 24] A Tel[(50 >> 16) & 0xff] A Te2[(s1 >> 8) & OxFf] A Te3[s2 & 0xff] A rk[15];
peek(s0, s1, s2, s3);

== VISUAL --

957,31-38

So what we will see now is the actual code and a demonstration of the attack. This code may
not work on the virtual machine that was given to you along with the course and you may to
tweak up this program a little bit and in order to get it run on your (())(13:25). So we will be
sharing this entire code with you, this code comprises of the attack.c which is essentially the
attack and there is also a library that is present contains the AES implementation, so we will

actually take a look at this AES implementation.

So this AES code is built on the lines of open SSL, one of the earlier limitations of the open
SSL and the 1* thing to note is the tables TO to T4 so they are defined here as follows, so each
of these tables is of 32 bits and there are 256 entries in total, there are 1024 elements in this
particular table. Similar to this table we have the 2™ table Tel which is also a 1024 bytes, Te2
and Te3, so Te4 is also present but we will not be using this and the other tables I use for

decryption which is not going to be important for us.

Let us go straight away to this AES encryption algorithm, so what this algorithm takes is an
input which is the plain text. It takes the AES key this is a structured to the expanded key and
it performs the encryption and find the use of cipher text through this particular output. The
AES has several different rounds of operations but what is important for us is only these set
of operations, these 4 lines essentially would XOR the secret key present in this AES key and
a pointer is obtained gained over here with the inputs, so the inputs are here the 16 bytes of
input and the (())(15:23) keys are XOR with it. During the 1* round operation as we had
mentioned there are several table lookups, so in fact each of these 4 tables Te0, 1, 2 and 3

would have 4 lookups each, so the results are XOR and then passed on the other rounds of the



cipher, so the remaining part of cipher from this cache timing attack perspective is not very

important for us

(Refer Slide Time: 15:55)
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ambika@madhava: /scratch/ambika/timingaes
lambika@madhava: /scratch/ambika/timingaess

A= T EIEL )

ambikaémadhava: /scratch/ambika/timingaess s
common.c key log params.h
attack.c common.o 1ib Makefile results
anbikaémadhava: /scratch/ambika/timingaess cd 1ib/
ambikaemadhava: /scratch/ambika/timingaes/1ibs s
aes_1024.c aes_1024.0 aes.h aes_locl.h Makefile openssl
anbikaeémadhava: /scratch/ambika/timingaes/1ib$ vim aes_1024.c
ambikaemadhava: /scratch/ambika/timingaes/1ib$ make
gcc  -03 -I. aes_1024.c -c
anbikagmadhava: /scratch/ambika/timingaes/1ibs 1s
aes_1024.c aes_1024.0 aes.h aes locl.h Makefile openssl
ambikaémadhava: /scratch/ambika/timingaes/1ib$ cd ..
ambika@madhava: /scratch/ambika/timingaess 1s

attack.c common.c common.o key lih log Makefile params.h result
anbikaémadhava: /scratch/ambika/timingaes$ vim attac

Terminal " = [ 13 @) 403PM 2 ambika %
o ambika@madhava: /scratch/ambika/timingaes
(c=4; c<16; ++c)
rintf("%02d(%x) *, ¢, finddeviant(c));
printf("\n"

double attackrndi()

int ii=0, i;
unsigned int start, end, timing;

(ii++ <= (ITERATIONS)){
/* Set a random plaintext *
(i=0; i<16; ++i) pt[i] = random() & Oxff;
/* Fix a few plaintext bits of some plaintext bytes */

pt[0] = pt[0] & O0xOf;
pt1] = pt[1] & 0xOf;
pti2] = pt[2] & OXOf;
ptl3] = pt[3] & 0x0f;

/* clean the cache memory of any AES data */
cleancache():

/* Make the encryption */
start = timestamp();
ES_encrypt(pt, ct, &expanded);
nd = timestamp();

timing = end - start;

(ii > 1000 && timing < TIME_THRESHOLD){
/* Record the timings */
(i=a; i<16; ++i){
ttime[i][pt[i] >> 4] += timing;
teount[i][pt[i] >> 4] += 1;
}

/* print if its time */
(i & (i - 14
printf("x08x\t”, ii);
Findkeys();

115,17-31 68%
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ambika@madhava: /scratch/ambika/timingaes

/* clean the cache memory of any AES data */
cleancache();

de

/* Make the encryption */
start = timestamp();
AES_encrypt(pt, ct, &expanded);
end = timestamp();

timing = end - start;

(ii > 1000 & timing < TIME_THRESHOLD){

i1[ptli] >> 4] += timing;
Btcount[il(ptri] >> 4] += 1;
b

/* print if its time */
(11 & (i1 - 1))
printf("%08x\t", ii);
findkeys();:
printtime(4);

void ReadKey(const unsigned char ~¢1henane)
{
int i;

retkey[16];
ecretkey[16];

/* Read key from a file */
((f = fopen(filename, "r")) == NULL){
printf(“Cannot open key filewn");
exit(-1);
123,4-32 82%

So before we go further we would make this particular AES implementation by just running a
make, so this would create an object file AES 1024.0 which we then involved in our attack,
so we will now go to the attack code it is over here and we will just jump directly to the
attack function and what we see is the following, so 1% of all over here we selection some

random plain text, this plain text PT is defined globally as in array of 16 bytes.

We randomly select something on it and for certain bytes the plain text 0, 1, 2 and 3 we make
the higher (())(16:40) to be equal to 0 then we invoke this function called clean cash and then
we invoke this AES encrypt. Now what happens during the AES encryption is there is this
plain text which is taken as the 1* parameter and there is an expanded key which is also
available and finally this would trigger the AES encryption to occur and the cipher text is

obtained.

These times stamps here as well as here are used to actually time the execution of this AES,
so you could refer to the previous video about the cover channels to look at how these
timestamps are programmed and how they obtain the time. More important for us is that we
evaluate these timings and use a similar frequency distribution and statistical techniques has
been done previously to record the timing and then at a later point determine the secret key.
We will not go more into detail about this particular program and it is actually quite

interesting and you could look at it more in detail and try to run this particular program.
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ambika@madhava: /scratch/ambika/timingaes

ambikaemadhava: /scratch/ambika/timingaes$ 1s
common.c key log params.h
attack.c common.o 1ib Makefile ts
ambikaemadhava: /scratch/ambika/timingaes$ cd lib/
ambikaemadhava: /scratch/ambika/timingaes/1ib$ 1s
aes_1024.c aes_1024.0 aes.h aes_locl.h Makefile openssl
ambikagmadhava: /scratch/ambika/timingaes/1ib$ vim aes_1024.c
ambikaemadhava: /scratch/ambika/timingaes/1ib$ make
gcc  -03 -I. aes_1024.c —c
anbikagmadhava: /scratch/ambika/timingaes/1ib$ 1s
aes_1024.c aes_1024.0 aes.h aes locl.h Makefile openssl
anbikaemadhava: /scratch/ambika/timingaes/1ib$ cd ..
anbikaemadhava: /scratch/ambika/timingaes$ s

attack.c common.c common.o key lib log Makefile params.h re
anbikaemadhava: /scratch/ambika/timingaes$ vim attack.c
anbikagmadhava: /scratch/ambika/timingaes$ make
1lib/ -03 attack.c -o attack lib/aes _1024.0 common.o -lm
In function ‘ReadKey’:
attack.c:150:9: warning: ignoring return value of ‘fscanf’, declared with attribute warn_unused result [-Wunuse|

fscanf(f, "%x", &i_secretkey[i]);
A

ambika@madhava:/scratch/ambika/timingaess 1s
common.c common.o key lil

Makefile params.h result

0 8
a:/scratch/ar /timingaes$ ./attack

Getting First Round Key Relations

00000400 04(5) 05(8) 06(0) 07(8) 08(d) 09(3) 10(0) 11(b) 12(f) 13(b) 14(1) 15(f)
00000800 04(3) 05(4) 06(b) 07(a) 08(e) 09(8) 10(8) 11(5) 12(1) 13(4) 14(5) 15(a)
00001000 04(7) 05(6) 06(3) 07(9) 08(9) 09(e) 10(8) 11(5) 12(1) 13(4) 14(5) 15(c)
00002000 04(6) 05(3) 06(7) 07(c) 08(0) 09(7) 10(7) 11(9) 12(5) 13(1) 14(9) 15(7)
00004000 04(c) 05(2) 06(f) 07(5) 08(a) 09(7) 10(7) 11(c) 12(5) 13(4) 14(9) 15(3)
00008000 04(8) 05(4) 06(7) 07(7) 08(5) 09(a) 10(7) 11(2) 12(9) 13(c) 14(1) 15(f)
00010000 04(7) 05(4) 06(2) 07(7) 08(5) 09(d) 10(7) 11(a) 12(9) 13(3) 14(2) 15(f)
00020000 0a(f) 05(3) 06(a) 07(7) 08(f) 09(f) 10(7) 11(f) 12(1) 13(b) 14(c) 15(f)
00040000 04(6) 05(a) 06(3) 07(7) 08(8) 09(f) 10(7) 11(5) 12(1) 13(0) 14(5) 15(f)
00080000 04(6) 05(a) 06(5) 07(6) 08(8) 09(a) 10(7) 11(6) 12(3) 13(b) 14(c) 15(f)
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ambika@madhava: /scratch/ambika/timingaes
ambika@madhava: /scratch/ambika/timingaes$ cd lib/
ambika@madhava: /scratch/ambika/timingaes/1ibs ls

Maes 1024.c aes_1024.0 aes.h aes locl.h Makefile openssl

ambika@madhava:/scratch/ambika/timingaes/1ib$ vim aes_1024.c

ambika@madhava:/scratch/ambika/timingaes/1ibs make

gce  -03 -1I. aes_1024.c -c

ambika@madhava:/scratch/ambika/timingaes/1ibs 1s

aes_1024.c¢ aes_1024.0 aes.h aes_locl.h Makefile open

ambika@madhava:/scratch/ambika/timingaes/1ibs cd ..

ambika@madhava:/scratch/ambika/timingaess 1s

attack.c common.c common.o key 1ib log Makefile params.h result

ambika@madhava:/scratch/ambika/timingaess$ vim attack.c

ambikaemadhava: /scratch/ambika/timingaes$ make

. -Ilib/ -03 attack.c -o attack lib/aes_1024.0 common.o -1m

In function ‘ReadKey’:

attack.c:150:9: warning: ignoring return value of ‘fscanf', declared with attribute warn_unused_result [-Wunuse|

d-result]

fscanf(f, "%x", &i_secretkey[i]);

ambikagmadhava: /scratch/ambika/timingaes$ 1s

attack.c common.c common.o key 1ib log Makefile params.h re
ambikagmadhava: /scratch/ambika/timingaes$ cat key

00 00 00 00 64 50 60 70 80 90 a0 b0 c0 do e0 fo

ambikagmadhava: /scratch/ambika/timingaes$ ./attack

Getting First Round Key Relations

00000400 04(5) 05(8) 06(0) 07(8) 08(d) 09(3) 10(0) 11(b) 12(f) 13(b) 14(1) 15(f)
00000800 04(3) 05(4) 06(b) 07(a) 08(e) 09(8) 10(8) 11(5) 12(1) 13(4) 14(5) 15(a)
00001000 04(7) 05(6) 06(3) 07(9) 08(9) 09(e) 10(8) 11(5) 12(1) 13(4) 14(5) 15(c)
00002000 04(6) 05(3) 06(7) 07(c) 08(0) 09(7) 10(7) 11(9) 12(5) 13(1) 14(9) 15(7)
00004000 04(c) 05(2) 06(f) 07(5) 08(a) 09(7) 10(7) 11(c) 12(5) 13(4) 14(9) 15(3)
00008000 04(8) 05(4) 06(7) 07(7) 08(5) 09(a) 10(7) 11(2) 12(9) 13(c) 14(1) 15(f)
00010000 04(7) 05(4) 06(2) 07(7) 08(5) 09(d) 10(7) 11(a) 12(9) 13(3) 14(2) 15(f)
00020000 04(f) 05(3) 06(a) 07(7) 08(F) 09(F) 10(7) 11(f) 12(1) 13(b) 14(c) 15()
00040000 04(6) 05(a) 06(3) 07(7) 08(8) 09(f) 10(7) 11(5) 12(1) 13(0) 14(5) 15(f)
00080000 04(6) 05(a) 06(5) 07(6) 08(8) 09(a) 10(7) 11(6) 12(3) 13(b) 14(c) 15(f)
00100000 04(6) 05(4) 06(5) 07(7) 08(8) 09(f) 10(b) 11(6) 12(3) 13(b) 14(f) 15()
00200000 04(6) 05(7) 06(8) 07(7) 08(8) 09(f) 10(b) 11(b) 12(3) 13(b) 14(f) 15(f)
00400000 04(6) 05(4) 06(2) 07(7) 08(8) 09(f) 10(b) 11(7) 12(3) 13(b) 14(f) 15(f)
00800000 04(6) 05(7) 06(5) 07(7) offEH] 09(f) 10(b) 11(7) 12(3) 13(b) 14(f) 15() i
AC

ambikaemadhava: /scratch/ambika/timingaess [|

In order to compile this program we run a make and obtain an output known as attack. The
idea is that we run this attack and try to get this security key, so the secret key is present in
this particular file call key, this file is actually ready by the AES code and it is used during the
encryption. The idea is to get as many bytes as possible from this secret key, the first think to
note is that there 16 such bytes over here and therefore we would obtain a key size of 128
bits, the hope is that when we run this attack we would be able to reduce this uncertainty

about the key to a significant level.

So in order to run we just run the attack and what gets printed are the potential key bytes
from here onwards that is 4™ to the 15™ key bytes. The values printed within the brackets are

what the attack program has identified the 4™ key which is 64 for instance. The attack



program has identified 6 essentially has been able to identify the most significant 4 bits of the
key.

Now each row over here tells the number of measurements that have taken place, so for
example this is in hexadecimal notation, so for example this particular row are the results of
the attack after 1024 iteration that is 1024 measurements of the execution time of the AES
and what we see is that the next one is double that amount which is around 2048 iterations
and so on, so as we increase the number of timing measurements that is the iterations in the

attack actually increase, we see that the result become more and more accurate.

So this particular code is program to go up to 2 power 24 and these are the results after those
titrations, so what we see is that we have this enable which has been predicted correctly by
the attack this is 6 over here and what the attack also obtain is 6 however the next byte which
is 50 the attack has obtain 7 wages, so in this particular way we can find the correctness of
the attack, so we can stop this attack due to time constraints and see the number of bytes that
have actually been obtained and count the number of bytes that have actually been obtained
correctly, so for example here this bike has been correctly obtained because this is 6 so on
this bytes has been found completely, so what we find if we compare the most significant
label of these 16 bytes and compared them with the results within the braces over here, we
find that the attack has identified 4 nibbles correctly that these nibbles occur here, here, here
and finally here.

(Refer Slide Time: 21:33)
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So let us see how much we have actually know about the key, so prior to the timing attack we
had a key size of 128 bits which means that there are... to our uncertainty about the key is
essentially 128 bits. The actual key is one among 2 power 128 possibilities, so after the
timing attack which we have done we found that there are 4 nibbles that we have predicted
correctly, so therefore it is like we have identified 4 that is 16 bits of the secret key, so thus
the uncertainty about the key reduces from 128 bits to 128 bits minus 8, so this means the

uncertainty about the secret key has reduced to 112 bits.

So thus we see that we have been able to reduce the uncertainty about the key, this is one of
the initial attacks that was actually proposed for cache memory. There are much more
advanced attack where you can get the secretly key with much more accuracy we leave it to
the viewers to actually try this particular attack and also read the state-of-the-art attacks in
this direction and see how we could reduce the entropy or the uncertainty about the secret key

to construct lesser than what we obtain over here. Thank you.



