
Information Security - 5 - Secure Systems Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
Protecting Against Hardware Trojans

 Hello and welcome to this lecture in the course for Secure Systems Engineering, in the previous

video lectures we had actually looked at hardware Trojans we had looked at two mechanisms to

detect hardware Trojans, the first was called Fanci which detected hardware Trojans present in IP

cores the second was using site channels such as the power consumption of a device to identify

the presence of a hardware Trojan in a fabricated IC. Now as we mentioned in the previous video

all of this techniques though successful to a certain extent are very easily awaited by Trojan

developers essentially we could write hardware Trojans that specifically could bypass all of these

techniques that have been developed to detect hardware Trojans.

An alternate approach to solve this particular problem is to prevent hardware Trojans altogether

so essentially if we cannot detect the presence of a hardware Trojan we will design circuits in

such a way so that insertion of hardware Trojans in the circuits become difficult.

(Refer Slide Time: 01:30)

In this lecture we will be looking at this paper called silencing hardware backdoors this paper

was actually presented in Oakland 2011 and a lot of the slides that we will be presenting today in

this video lecture is by Adam Waksman’s Oakland talk in 2011 essentially the talk corresponding

to this specific paper.

(Refer Slide Time: 01:52)

Now a lot of the paper is based on the fact that the hardware Trojan comprises of two

components. The first component is known as a trigger and the second component as we have

seen in the previous lectures is the payload if somehow we can design our hardware model such

that it is difficult to create such a trigger then payload would never execute even though a

hardware Trojan maybe present if the trigger never happens as expected by the attacker then the

payload will never execute and a sensitive information or malicious activities by the device

would never occur. So the critical aspect in what this paper talks about is how would we make

triggering the hardware Trojan difficult? Essential idea in this entire thing is a way to hide the

triggers so that the payloads never execute.

A base idea is to enumerate the different ways a triggers can appear in a hardware design and try

to make it difficult for an attacker to actually design Trojans with these variety of triggers.

(Refer Slide Time: 03:07)

To understand this we take a high level picture of a hardware module and what we see is that

every hardware module comprises of some inputs and (provided) provide some outputs these

inputs can be categorized as global inputs such as the clock resets signal and so on. A control

inputs which modify the state machine of the hardware module, data inputs for example data

read from memory and so on and each of these will affect the outputs of the particular triggers

and each of this will affect the outputs of this particular module, each of these inputs global

control data and test could potentially be wave through which a trigger can be activated.

So in this particular work we focus mainly on the triggers that could come through the global

signals the control signals and the data signals. So each of this different signals global control

and data would have different types of triggers so we call the triggers based on the global signals

such as a clock as a ticking time bomb, control signals could be cheat codes which are single

shot or in a sequence or data signals could again be cheat codes in a single shot or sequence.

So what we will see in this particular video lecture is how each of this triggers will look and how

we can design our hardware modules so as to prevent these triggers or make it difficult for an

attacker to build hardware Trojans with this mechanisms.

(Refer Slide Time: 04:57)

So let us start with trigger ticking time bombs. Essentially if we consider this as our hardware

module what a ticking time bomb trigger does is that it waits for a fix time and then triggers the

hardware Trojans payload to execute this time is typically specified by the attacker. The attacker

we want that the Trojan’s trigger gets activated may say after a few months a few weeks or

maybe even a few years or maybe at a specific time during the year.

(Refer Slide Time: 05:32)

So if we look at this more in detail about how a ticking time bomb’s trigger would be designed

the design would look something like this. so there would be an input to the device over here so

this input could be either say data or anything else which is specified by the user (there) this

would go through an (original) through the standard logic which is supported by the hardware

device and then the output goes. The hardware Trojan in such a scenario would look something

like this. We would have a counter over here which possibly gets incremented at every clock

pulse and furthermore this counter is compared with the triggered value.

For example let us say that the attacker has designed the hardware trigger so that it gets activated

after a year. So this means that at regular intervals as the counter is incremented the comparator

would check the number of clock cycles that elapsed or the number of amount of time that elapse

and typically would give a value of zero after right amount of period has elapsed the comparator

would provide an output of 1. Side by side there is a malicious logic which performs for example

leaks the secret input through a multiplexer so in the general operation the comparator would

give an output of zero which would mean that the original logics result is sent to the output.

On the other hand when the right amount of time has elapsed the comparator would give you an

output of 1 which causes the multiplexer to switch the output from that of the malicious logic,

therefore when the comparator provides an output of 1 that is after the specified time has elapsed

then the payload corresponding to this malicious logic gets executed and secret or sensitive data

is leaked to the output. Now in order to silence ticking time bomb what we first assume is

something known as an epoch duration. Now this duration could be anywhere say from 1 week,

few days or even a month and what we assume here is that this during this epoch period we have

extensively tested the entire design so that no hardware Trojans get triggered within this a

particular epoch period.

Now beyond this epoch period we are not certain whether a hardware Trojan may get triggered

or not. So in order to silence this ticking time bomb what we do is that at periodic intervals of

time at periods equal to that of an epoch we reset the entire circuit that is we reset the power of

the circuit. So by doing so what would happen is that the counter which is counting the time

elapsed and is part of the hardware Trojan would also get reset. So therefore the maximum count

that is permissible by this counter is upto the epoch. Now since we resetting the power at the end

of the epoch the counter would reset and start counting gain to zero.

Now based on our assumption and the extensive testing that there are no hardware Trojan that

can be triggered with a time less than an epoch resetting this circuit would prevent any Trojan

from being triggered. However resetting the circuit in the middle of its operation has its own

hurdles.

(Refer Slide Time: 09:24)

So resetting would imply that we would need to flush the pipeline we need to save the current

state of the entire system so that when the power is turned on again the hardware device can

actually continue to execute from where it had stopped. The various components within the

hardware such as register, branch history targets and so on would require to be saved.

(Refer Slide Time: 09:53)

Now what we will now discuss is whether there is a way to bypass such protection mechanism, is

there a way an attacker could still trigger Trojans payload at a time which is even greater than an

epoch even with the resets that are present. So one thing that the attacker could do is that

periodically the attacker could actually store the counter in a memory location. So this memory

location we can assume is non-volatile and what we could actually do is that when the power is

restarted the first thing the counter would so is to restart from the stored value this way

potentially the attacker could cost the counter to count 2 value which is greater than the epoch

time.

So in order to do this what the attacker would need is that some amount of non-volatile memory

or flash memory to be present within the IC so the attacker could for example add a few cells of

flash within the hardware design and use this malicious flash to store the intermediate counter

values one thing that can be done to actually prevent this is to repeatedly turn the device on and

off for example this can be done by say connecting the clock source to the power source

therefore the device is continuously and very at a very high rate turned on and off and what

would happen if there are flash memories present is that the flash memories would get destroyed.

Thus even if the attacker decides to add flash and store the intermediate counters in this non-

volatile memory the flash would get destroyed by this repeated turning on and turning off the

device. Another potential way to bypass this protection mechanism for a ticking time bomb is to

write this intermediate value of the counter into some memory location in the RAM for instance

and after the reset assuming that the RAM value has not decayed however aspect such as

unmaskable interrupts could actually make designing such a mechanism quite difficult so in

order as we know unmaskable interrupts cannot be blocked and if an unmaskable interrupt

occurs during the time when the device is turned off or when the power reset is being done then

that interrupt would get lost.

In order to prevent this what needs to be done is a FIFO can be used which would temporarily

store the unmaskable interrupts during this power reset time. Other aspects which may make

things difficult is the performance counters which may also be a source of time bombs.

(Refer Slide Time: 12:50)

Another way to trigger Trojans is by something known as cheat codes so with a cheat code the

specific input for example cafebeef when given to the trigger circuit would activate at the trigger

circuit which in turn would then activate the payload of the hardware Trojan. Now we have seen

examples of this in the previous videos we had seen how when a specific address is present in the

input this specific address would then set a trigger value to 1 which would then switch a

multiplexer to leak sensitive data to the output.

(Refer Slide Time: 13:29)

A typical cheat code type of hardware Trojan would look something like this we have a input

over here and the attackers specific cheat code is stored over here. So for each input that comes

there is a comparison done between the cheat code stored and a output of 0 or 1 is then obtained.

So for inputs which are not equal to that of the cheat code the multiplexer would chose the

original logic as the output and the results would work as normal and when the input is equal to

that of the cheat code the multiplexer would then switch to the malicious logic and then the

secret information get can get leaked out. So how would one actually prevent hardware Trojans

from the activated with cheat codes.

(Refer Slide Time: 14:21)

So one way is to make sure that the cheat code set by the attacker is never obtained as per his

wishes. So for example if we have an encryptor module over here any input which is given first

get encrypted or in other words gets obfuscates to some other value then the hardware module

works on this encrypted data and then there is a decrypted module and obtained a current correct

output. So note first that since or every encryptor there is also a decryptor at the output the

results should always be correct and secondly also note that this obfuscation of the inputs would

prevent the cheat code from activating the trigger.

For example if the cheat code is a cafebeef we have cafebeef stored over here now what the

attacker would expect is that when he gives an input equal to cafebeef it would change the

comparators output to 1 and forcing the malicious logic to be activated and change the output

results. Now what we have done is we have introduce an encryptor over here which essentially

obfuscates the input and cafebeef when supplied as an input is actually mapped to some other

totally different value and therefore will not match the cheat code which is stored and therefore

the attacker will not be able to control this multiplexer as per the wishes.

(Refer Slide Time: 15:56)

So one ideal way to build such data of obfuscation is by a technique known as homomorphic

encryption this technique was actually proposed by (())(16:06) Gentry in 2009 so here what

happens is that the memory controller is assumed to be able to work on encrypted data provide

inputs for example S 5 and 7 it gets encrypted using the homomorphic encryption and then the

memory controller will be able to function on this encrypted data and then provide its result. The

decryptor would then be able to decrypt and get the correct values for the inputs. However

homomorphic encryption is quite difficult to achieve in practice especially for this kind of uses

and therefore we would require alternate options.

(Refer Slide Time: 16:55)

So what was proposed in the paper was to actually divide the type of operations into non-

computational and computational. So hardware components such as routers, interconnects

memory, cache memories, buffers, registers and so on are non-computational hardware entities.

So these are non-computational because it does these do not actually modify the data but rather

they just either store the data or just route the data to specific locations or just provide a look up

so on. So providing data obfuscation with such non-computational hardware units is quite easy

all that is required is just an EX-OR at the input with some secret data.

So this EX-OR would then map specific input to something which is totally different and

similarly anything which is stored over here that same secret is EX-OR back to obtain the

corresponding output. So for example if we have this memory controller what we could possibly

do is if your input is 5 you EX-OR it with a certain specific key and obtain a value of 8. So a

similarly by EX-ORING again the output 8 with that same key you re-obtain 5. In a similar way

by taking the input 7 encrypting 8 with a specific key and obtaining 4 and at the other end when

we have 4 we decrypt it with the same key to obtain back the 7.

So this would prevent the triggers now let us say that if in this memory controller there is a

hardware Trojan which is based on this cheat code and let us assume that the cheat code has a

value of let us say 5.now when the attacker sends a value of 5 hoping that the trigger would get

activated it will not in this case because infact the value of 5 is getting encrypted to 8 and

therefore will not actually activate the trigger.

(Refer Slide Time: 19:06)

Now achieving data obfuscation for the computational case is far more difficult now if we have a

module which actually computes something for example it would be ALU’s (())(19:15) decoders

or any other custom logic it is actually very difficult to obfuscate these things and this has to be

done on a case to case spaces for example if there is an ALU and within the ALU there is let us

say an a multiplier now we would require to obfuscate the inputs to the multiplier and remove

the obfuscation at the after the n so that the original results are obtained. So this is not very easy

and has to be done on our case to case spaces.

(Refer Slide Time: 19:49)

Another way triggers can be build is by sequence cheat codes for example if particular sequence

such as CAFEBEEF is obtained in specific sequence only then this particular Trojan if it is

present in this hardware unit it would get activated. So we had seen examples of this sequence

cheat code in the first lecture on hardware Trojans and we had seen how a state machine would

be maintain by the hardware Trojan to identify transitions whenever these specific inputs are

obtained and eventually move the trigger from a 0 to a 1 and thereby by forcing the payload to be

activated and secret information leaked out.

(Refer Slide Time: 20:40)

So one way by which we can break this sequence paste cheat codes is by reordering assuming

that there is no dependency between these various inputs and any input in can independently

come at any time if we break these inputs for example if the inputs provided in A, B and C order

which is reordered the inputs like this into A C and B and feed it here and we reorder the results

back after the computation is done. So why would this thing work? Let us say that the attacker

has kept sequence cheat code as A B and C now the attacker is sending A B and C as the input

and is hoping to hoping that this sequence of cheat codes would trigger the hardware Trojan and

thereby the payload.

So internally this trigger will occur by the state machine which moves due to A then to B and

then finally to C and moving to in this sequence would then cost the trigger to be activated. Now

since we have reordered these inputs from A B C to A C B this state machine will never reach its

final state and therefore the trigger will never get activated and therefore the payload will be non-

functional. Another way to handle this sequence cheat codes is by (())(22:13) inserting some

random inputs so for example over here given the input is A B and C and the attacker is actually

waiting specifically for A to occur then B and then finally C in consecutive cycles inserting a

random input D would actually break this sequence and (())(22:32) prevent the hardware Trojan

from being activated.

So designing circuits or systems keeping in mind these hardware Trojans and the way a Trojans

triggers can be designed could drastically reduce the cases where Trojans can be activated in

particular hardware module however as we have seen there are many cases or many circuits

where making such designs is incredibly difficult to do.

(Refer Slide Time: 23:04)

In such cases the worst case situation is where we could actually have two units possibly

designed independently and both inputs are sent into both of these units and verified at the

output. So for example we have a very complicated circuit over here let us say for example

cryptographic algorithm and we want to ensure that this cryptographic algorithm does not have

any Trojans.

What we could do is we could design completely independently and other unit a prime and

possibly just fabricated this unit in a totally different environment and feed the same inputs to

both this units. So both this units perform exactly the same functionality and if there is no Trojan

that is present would give the same output. Now if for example we provide a specific input

specific time or a specific cheat code which triggers a functionality in one of this units then the

results would be different between unit A and unit A prime and as a result this checker over here

would identify the difference and then stop the execution form occurring, thank you.

