
Information Security - 5 - Secure Systems Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
The Rowhammer Attack

Hello and welcome to this video lecture in the course for secure systems engineering. In this

video lecture we will look at a recent hardware attack which is known as a rowhammer, so

this attack would let you flip bits stored in the DRAM without actually accessing them, it is a

quite a recent attack it was discovered in 2014 and since then there have been various exploits

which have used this technique to mount different types of attacks on applications and

systems. Also there have been many countermeasures that have been developed in the recent

past to prevent this attack.

(Refer Slide Time: 1:00)

A lot of these slides are actually borrowed from Professor Onur Mutlu’s talk indeed in 2017.

(Refer Slide Time: 1:08)

So before we go into what row hammer means we would like a small background about

DRAM’s, DRAM as you know is one of the typical structures which are used for random

access memories in systems, so a typical DRAM would look something like this way, these

DRAMs are capacitive memories and they are arranged in this matrix like thing with rows

and columns with a capacitor at each node. One particular DRAM cell would look like this,

there is a transistor and an associated capacitor.

So when a 1 needs to be stored on this capacitor the capacitor is charged and in order to read

the capacitance this transistor is turned ON and the data either 1 or 0 whether the capacitor is

charged or discharged is actually read through this particular bit line. So essentially the

charge of the capacitor defines whether this memory cell is storing a 1 or a 0 and capacitor

must be large enough. The problem that may occur in capacitors is that the charge on the

capacitor may gradually leak over a period of time, thus in order that a DRAM cell holds its

charge it is required that the DRAM cells be recharged periodically.

(Refer Slide Time: 2:21)

So in order to achieve this what would happen is that there would be a special external

circuitry, which periodically leads every cell in the DRAM and rewrites it therefore restoring

the charge of the capacitor. So this refreshing phase ensures that the charge on the

capacitance is restored and maintained for a longer period. So this particular figure over here

shows how the refreshing occurs, so refreshing typically occurs periodically in a DRAM

structure, so these particular areas is where the DRAM is inaccessible due to the refreshing

period where the capacitors are recharged, while the accessible regions in the DRAM is over

here. So any load or a store operation to a DRAM has to be within this particular time period.

(Refer Slide Time: 3:34)

Now as we mentioned DRAMs are arranged in rows, so every time we want to actually read a

particular memory location the entire row is activated and the charge is stored (from stored)

in the various capacitors are then copied into this row buffer, from the row buffer it would

then move to the various other components of the system including the cache memories and

the processors. Now as time progressed and memories became more and more complex it

was required to actually scale down and have more dense memories. As a result the number

of such rows present in a DRAM was actually reducing over a period of time.

Now a consequence of this scaling was that the gap between these rows also reduced and

since the cells in each row worked due to the charge present as the space between the rows

reduced it became more and more likely that there would be interference between these

various rows, essentially the closer the charged bodies are, the higher the electromagnetic

interference between the various rows, this fact was actually utilized in the row hammer.

(Refer Slide Time: 4:46)

What the row hammer vulnerability actually showed was that if a particular row in the

DRAM was continuously accessed this continuous memory access could actually influence

the neighbouring rows. So for example over here we had one specific row which has been

continuously accessed and it could influence the charge stored in the adjacent rows, the

reason for this is that continuously toggling the row voltage slightly opens the adjacent rows,

thus forcing the adjacent rows to leak much more quickly.

In other words the adjacent rows would actually discharge much more faster than the refresh

period. The result is that certain cells on the adjacent rows may get corrupted and the data

present in them may actually be toggled.

(Refer Slide Time: 5:40)

Now this is an example of how a row hammer attack would work and this animation is

(taking) taken from this particular website from Manchester University, what the attacker

would do is that he would toggle specific rows in the DRAM and access them continuously

within a refresh period. Now this would influence the neighbouring rows and force the data

present in the neighbouring rows to be toggled.

So this is represented here by these green and red blocks, the green block show what the

attacker is legally accessing, while the red block show what show the effect of falls induced

due to the row hammering of the DRAM. So what we are able to achieve is that we have been

able to toggle adjacent rows just by accessing memory locations at a very high rate. Now why

this is actually critical is that you are modifying the integrity of the storage of the data stored

in the memory.

For example let us say that we have operating system specific data present in this specific

row. For example this may be say of a particular page table and more particularly this (())

(7:02) may specify that a page is accessible only by the kernel. Now by inducing an error

through the row hammering of the adjacent rows we would be able to modify the contents of

the page table. So we would for example be able to convert a page which is meant only for

the kernel to be accessible by user programs also.

(Refer Slide Time: 7:26)

A typical row hammered program would look something like this, you could actually look at

the source code over here from where this code has been borrowed, it is quite simple it has a

small loop in which we target very specific rows within the DRAM. So in this particular case

we are targeting this row x and y and forcing memory accesses to be done on these rows, note

that the contents of this particular memory location is loaded into the eax register and ebx

register as shown over here.

The CLF flush instructions is supported by x86 systems to flush the data corresponding to x

and y from the cache memory. So this would ensure that the DRAMs are always accessed

during these load instructions and the load does not actually obtain the data from the cache

memories. The mfence instruction is used to serialize the transfers to the DRAM. So this

small set of instructions is repeated over and over again at a very high rate thus posing

continuous access to rows in the DRAM.

Now as we have seen in the previous animations doing so within at a rate much faster than

the refresh period of the DRAM would cause the adjacent rows to lose charge and induce

errors and falls in the adjacent rows.

(Refer Slide Time: 8:55)

This vulnerability has been used to actually mount several different attacks these attacks for

example can be written in JavaScript and force web applications to obtain root privileges.

Other attacks are the rampage attacks and the glitch attacks you could actually look up these

attacks for more details.

(Refer Slide Time: 9:12)

Since the discovery of row hammer there have been several solutions that have been

proposed, so these solutions have been done at various levels at the hardware level now D

DRAMs are designed in such a way so that the effect of such that row hammer is less likely

to happen. Also things like increasing the refresh rate, adding more sophisticated error

correction techniques have been used in the hardware to actually make this to take care of

these solutions.

Similarly techniques in the operating system like ensuring that the DRAM is partitioned and

sensitive and non-sensitive data are not placed adjacent to each other on the DRAM. Other

techniques like identifying patterns of usage in the DRAM is done using things like

performance, counters present in modern processors and this is then used to prevent any row

hammer like attacks. So the code for the attack can be downloaded, thank you.

