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Hello and welcome to this lecture in the course for secure systems engineering. So in the

previous video lectures we had looked at micro-architectural attacks, we had looked at flush

and reload, the prime and probe and other such timing attach which uses the cache memory.

In this video lecture we will look at something which is relatively new, so it is known as

speculation attacks so these attacks are essentially targeted for Intel like platforms which have

certain features, so the features which are exploited are the out of order execution and the

speculative execution. Also a variance of these attacks also use the features of the branch

predictor which is a common hardware in many of these modern day microprocessors.

So before we go into what these attacks are, so let us have a brief background into what

speculation means and what these terms connected to speculation actually do.
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So let us look at these set of instructions, so here we have like there are 5 instructions and this

is what the compiler would have actually generated or if a programmer is writing code in

assembly  he  would have written  code in  this  particular  way. So what  you see here is  5

instructions they are the load, move, add, store and the subtract instruction and all of them

work on different set of registers. So there are like the registers r0, r2, r1 and r4 which are

actually the target registers for each instruction or in other words these are the registers where

the result of that instruction is stored.



In order to actually run this these set of instructions in a correct manner or what is expected is

that  each  of  these  instructions  execute  in  precisely  this  order. So  firstly  load  instruction

executes, then move, add, store and subtract. However, quite often what has been noticed is

that it would be beneficial from a performance perspective if these instructions are reordered.

For  example  since  we know that  the  load  instruction  actually  would  access  a  particular

address in this case address 1 from the main memory or from say a cache memory this load

instruction  would take considerably longer  than other instructions  like the move and add

which are just performed with registers stored within the processor.

So as long as the arguments in the load instructions and those of these subsequent instructions

are independent it would be possible for the processor to actually execute these instructions in

an order which is quite different from what is specified in the program. In other words the

processor would still be able to get the correct result with even executing these instructions in

an out-of-order manner.

In the second figure what we show is what happens inside the processor. So you see that the

instructions are actually executed out of order, the subtract instruction in fact is executed first,

then we have the store instruction and so on. So what we notice over here is that eventually

since all of these instructions are independent of each other the ordering of these instructions

will not matter, what does matter eventually and what is done in the processor is at the end of

execution the results are actually committed in order.

So you look at this set of results or the results of these instructions and what you notice is that

the results correspond to the original ordering of these instructions. So for example r0 was the

destination for this load that is the contents corresponding to this memory address was loaded

into r0 and similarly r0 was the first result to be return back. So essentially what we see in

this particular slide is that even though a program is return in a particular manner it would

could be executed in any manner which we known as out of order, but eventually the order is

restored by the processor so that the results or the registers return back would match the

original expectation for the program.

So what we observe here is that even though the we have an out of order execution the result

of the program will be exactly the same.
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Another  feature  which  is  popular  in  many  modern  day  microprocessors  is  speculative

execution.  So speculative execution is used essentially to improve the performance of the

processor, so let us actually take a small example and we have a set of instructions as before

and one important instruction that is important for this example is this this is a jump on no 0

to a label.

So what happens over here is that depending on this comparison instruction if r0 is equal to

r1, then the 0 flag is set within the processor and as a result this jump on no 0 would not

cause a jump and the program will continue to execute. On the other hand if r0 is not equal to

r1 then the 0 flag is reset or in other words the 0 flag is equal to 0 and this particular check

would cause the program counter to jump to this label and start to execute from here, or in



other words what we see over here is a value of 0 flag set to 1 would cause these instructions

to be executed.

On the other hand if the 0 flag has a value of 0 then (there was a) there is a jump which takes

place and the instructions following the label would execute. Now the problem with this thing

comes from a performance perspective. So whenever there is a jump like this what would

happen  internally  in  a  processor  is  that  the  entire  pipeline  would  get  flushed  and  new

instructions corresponding to these instructions following the label would get fetched from

the memory.

Now advanced or very popular recent microprocessors have a considerably large pipeline and

as  a  result  there will  be several  hundred or so instructions  which may be present  in  the

pipeline.  So every time there is a branch like this to another memory location,  this entire

pipeline would get flushed and new instructions would need to be fetched from the target

memory. So this  could  cause  quite  a  considerable  performance  overhead.  So in  order  to

actually reduce these performance overheads what microprocessors do is they speculate about

the result of a jump instruction.

For example the processor would speculate that the instructions following this jump would be

the consecutive instructions and therefore it  will  start to fetch these instructions from the

memory and start to execute them in a speculative manner, what this means is that the results

of these instructions are not committed unless and until the result of this jump instruction is

known.

So let us consider this particular case, so first of all within the processor the instructions that

is  following  these  jump  on  no  0  would  get  fetched  from  the  memory  and  it  will  be

speculatively executed. Now when we actually execute this instruction or compare r0, comma

r1 and let us assume that r0 is equal to r1 as a result the 0 flag is set. Now in such a case jump

on no 0 label so this particular instruction would fail and the instruction that follows needs to

be executed.

But what happens within the processor is that these instructions are already speculatively

executed and the only thing that is required to be done is that the results of these instructions

should be committed. So what the processor does is that once this the result of this jump on

no 0 is obtained in this case it means that the speculation is correct, the processor would only



commit the results and the results corresponding to the various registers r0, r2 address 2 and

r4 would be actually committed.

So what we actually achieve over here is that even before completing the execution of this

compare and jump on no zero instructions the processor could have actually speculatively

executed these set of instructions and then commit these instructions only when the result of

compare and jump on no 0 is obtained. Now the thing which one would ask is this would

work fine for the specific example when r0 is equal to r1, but what would happen when r0 is

not equal to r1, well in such a case when r0 is not equal to r1 we know that the 0 flag would

be set to zero and the jump on no 0 to label would result in the execution being transferred to

these instruction that is following the label.

So in this condition 2 since the these instructions following have been speculatively executed

the processor would realize that in fact this speculation was wrong and these instructions

were  actually  not  to  be  executed.  As  a  result  the  speculated  results  are  discarded  and

execution continues from the instructions following the label.  So what we see is that the

speculation could possibly improve the performance of the program. So when the processor

as executed correctly in this case when r0 is equal to r1 then a performance is gained because

the speculated instructions could actually be committed at a much more faster rate.

On the other hand when the speculation is wrong as in this case r0 not equal to r1 then all the

speculated  (instructions)  result  should  be  discarded  and  there  would  be  a  performance

overhead,  all  modern  processes  try  to  speculate  correctly  in  order  to  maximize  their

performance. Another case where speculation is also observed is in something like this way,

here what we have done is that we have replaced this jump on no 0 label instruction with a

divided r0 by r1.

Now as we know there are a couple of things which are going on, one is the out of order and

also the speculation and what happens is that even before this divide gets executed it may be

likely that the instructions that follow this divide may be speculatively executed. So there

would be a problem that would occur if r1 happens to be equal to 0, in such a case we know

that a divide by zero exception would be thrown and as a result the processor would need to

discard  the  speculated  execution.  So as  a  result  if  r1  is  equal  to  0  all  the  speculatively

executed instructions would need to be discarded.
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In January 2018, what was shown was that this out of order and speculative execution can be

actually used to gain secret information out of the processor. So let us consider this small

snippet of code there are in fact 3 instructions which are present, one is a raise exception

instruction so this for example could be a divide r0, comma r1 and the case where r1 is equal

to 0 then we have a memory access to an array at a location data times 4096.

If we evaluate these two instructions in a normal operation what would happen is that due to

the raise exception this memory access to the probe array would never occur. However, due

to speculation and if we consider what happens within the processor due to speculation out of

order execution, the probe array at the location data into 4096 maybe speculatively executed

and when the risk (exception) instruction is actually executed the results corresponding to

probe array data into 4096 would be actually discarded.

Now what these new attacks actually showed was that even though the processor discussed

the result due to speculation in such a case the speculative execution has an effect on the state

of the processor, essentially due to this speculative execution of this memory axis or the state

of the processor may be in the cache memories or the branch predictors or so on may be

modified corresponding to the data which gets accessed.

So this particular figure shows how this program executes so we have a set of instructions

that gets executed and then there is an exception and what happens when these actually gets

executed  in  the  processor  is  that  many  of  these  instructions  will  actually  be  executed



speculatively  and  out  of  order.  So  it  may  happen  that  these  instructions  without  these

instructions following the exception may be speculatively executed.

However,  due  to  the  exception  that  is  present  over  here  the  results  of  the  speculatively

executed instructions would be discarded. However, what is seen is that these speculatively

executed instructions may have a signature inside the memory axis. So for example what

would happen here is that there would be your memory axis which is done speculatively and

data corresponding to probe array data into 4096 would be loaded into the cache memory

from the lower size of the memory.

So what has been shown in this particular figure is if you look at page numbers and on the x-

axis and the memory access time essentially make this memory access to probe underscore

array what we see is that the memory access time due to the speculative execution may be a

bit lower corresponding to the value of data. So over here for example the data has a value of

84 and therefore at the 84th page what is observed is that there is much lesser memory access

time.

The  takeaway  from this  particular  slide  is  the  fact  that  even  though  this  line  3  in  this

particular program has never been executed due to this  exception that is raised in line 1,

nevertheless the micro-architectural state of the processor is modified by this third line by this

memory access.
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So let us take a look at meltdown, so this was an attack which was discovered in January

2018 and it showed how we could actually read secret data from say parts of the kernel space.

So before we go into how the attack actually works, we would have to look at the virtual

address space of a process. So the virtual address space as we have seen in the previous

lectures comprises of two components, so it comprises of a user space where your typical

code stack heap and other data segments are present and above a particular memory location

you have the kernel space.

So the various protection mechanisms like the ring 0, ring 1, ring 2 and ring 3 guarantee that

when you are running in user mode a program (could) can only observe the user space part of

the process. On the other hand when a system call is invoked or you are running in the kernel

space or in the operating system the entire virtual address space including that of the kernel

space  plus  that  of  the  user  space  is  observable,  typically  in  a  32-bit  Linux  kernel  this

boundary is present at a location 0XC0000000, any memory address above this particular

location corresponds to a kernel space and any memory address below (that) this location

corresponds to that of a user space.

Now what meltdown showed is that with a simple attack exploiting that features of what

speculation actually provides a user space program would be able to read contents of the

kernel space. In other words a user space would be able to read code and data present in the

kernel space. So the attack as such is quite simple the attacker we assume is running in the

user space and has these two lines written in the program, the first line i equal to star pointer

corresponds to something like this we have a pointer variable over here and let us assume that

this point of variable is pointing to a location say this.



Now in the second statement an array which is present over here is accessed at a location i

into 256. Therefore,  the end result  of these two instructions  is  that  corresponding to this

pointer one element of the array is loaded into this variable called i, so due to this particular

load  what  we  know  due  to  the  processor  architecture  is  that  the  contents  of  the  array

corresponding to i into 256 would be loaded from the main memory into the various caches

and would also get loaded into one of the general purpose registers present in the processor.

So it would look something like this, when the second statement gets executed a particular

block corresponding to array of i into 256 would be copied from the DRAM into the cache

memory and also be copied into the corresponding general purpose register, now this is what

happens during the normal operation of the program. Now let us say that we craft a pointer

which is pointing to the kernel space.

So now what we are trying to do in the first statement is load some contents (of) from the

kernel space into this variable called i, so as we know that the kernel space is not accessible

from a user  level  program,  now this  would  result  in  an  exception  to  be  thrown and the

program would terminate. So however due to the out of order and speculative execution of

the processor the second statement would be speculatively executed. As a result we would

have  this  statement  reading  the  value  of  this  memory  location  into  i  and  speculatively

accessing array of i into 256.

Thus, the array would be accessed at a location which is dependent on the data which is

present in this kernel space memory location.  Thus, as we seen before one block of data

present in array would be loaded into the cache. Now important for us to observer over here

is the set which gets accessed. Now depending on the value of the memories present in this

kernel space memory location since this memory location is used to index into the array the

indexed location may access one of these multiple sets.

So what typically would happen is that if an attacker is able to determine which of these sets

has been accessed during the second operation the attacker would then be able to gain some

information about the value of i. So in order to do this what the attacker would do is it would

use something like the prime and probe what the attacker would do in order to find out which

cache set was actually used previously, the attacker would start to access every element in the

array notice. Notice that the first element in the table is not present in the cache and as a

result the memory access time would be large due to the cache misses.



Similarly if the attacker accesses the second element it would also result in a cache miss

because it is not available in the cache. On the other hand when the attacker finally accesses

this specific memory location it would obtain a cache hit due to the fact that this particular

element is present in the cache. Now the attacker would use this lower execution time for

memory access of this particular location, identify some information about the value of i and

therefore  be able  to  determine  some information  about  what  was present  in  this  specific

memory location in the kernel space.
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So if you go back and look at this particular slide what we see is that when i has a value of 84

it  shows  a  execution  time  which  is  considerably  lower  compared  to  all  other  memory

accesses to that array. Thus, the attacker would know that the value of i in other words the

contents of that kernel space memory has a value of 84. 
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So this simple example showed how one attacker could use the features of an Intel processor

to be able to read kernel space code or data just by manipulating these two statements and

forcing the processor to speculatively  execute and then try to identify  what was actually

speculatively executed by evaluating the memory access time, thank you.


