
Information Security - 5 - Secure Systems Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
Covert Channels

Hello and welcome to this lecture in the course of secure systems engineering in this lecture we

will look at a new form of attack known as micro architectural attacks.

(Refer Slide Time: 0:32)

So the in the course that we have seen so far we had actually studied various things that we

thought would actually increase the security of the system for example we had looked at

cryptographic algorithms and by means of encryption and decryption these cryptographic

algorithms would actually be used to obtain confidentiality and integrity of the system we have

known that passwords and information flow policies can be used to restrict how information

flows in the system and we have also seen that hardware aspects such as the privileged rings

present in modern processors and enclaves such as the SGX and trust zone which are present in

Intel and ARM processors respectively have been used at the hardware level to increase security

of the system.

We have also looked at various techniques by which we could have confinement wherein a

malicious program could be executed in a system and the confined environment Keep makes

sure that there is a sandbox and the confined environment creates a sandbox so that the malicious

program does not influence any aspect of the system outside of that sandbox we had also seen

that web browsers and web servers make use of JavaScript as the programming language

essentially because JavaScript is a programming language which is highly restrictive and

therefore access to the system in which a JavaScript program executes is very limited.

(Refer Slide Time: 2:25)

In this particular lecture we will be looking at a new form of attack known as micro architectural

attacks now the interesting thing about micro architectural Attacks is that they can break all of

these things that we have actually talked about so for example micro architectural attacks have

been used to break cryptographic schemes where in the secret key of the crypto scheme has been

retrieved by means of a micro architectural attack similarly passwords and the information flow

policies such as the Bell la Padula models have been broken by these attacks similarly privileged

links enclaves ASLR and so on have all been broken by macro micro architectural attacks.

So a micro architectural attack is essentially a class of different types of attacks for example this

list away here provides some of the famous micro architectural attacks so the cache timing

branch prediction row hammer types of attacks are all micro architectural attacks.

So in this particular course we'll be first looking at the cache timing attacks and we'll have also

have a brief overview of speculation attacks but in this but specific lecture we would have an

introduction to what a micro architectural cache timing attack can do with respect to the

information flow policies so in particular we have seen the various information flow policies like

the Bell la Padula and PIBA model and what we had actually studied in the previous lecture was

that each of these models could respect how information can flow for example in the Bell la

Padula model we had different levels ranging from top secret to confidential and so on and the

rules provided by the Bell la Padula model decided how information should be flowing from a

one level to another level for example the model defined that I users present in a lower level such

as an unprivileged or unclassified user would not be able to read a top secret document.

So we would start with something known as a covered we look at something known as a cache

covert channel and we would see how this covered channel could be used to break information

and we would see how schemes such as the Bell la Padula model can be broken using cache

timing attacks.

(Refer Slide Time: 5:00)

So let us start with a cache covert channel so before we go into water cache covert a channel is

we will have a brief introduction to what a cache memory is and why it is used so a cache

memory sits between the processor and the main memory so it caches recently used data and

instructions so the reason for the cache memory is that loads and stores from the main memory is

extremely slow therefore or the cache memory which can be accessed at a much faster rate than

the main memory would be able to service loads and store requests from the processor at a much

faster rate so for example we have a load instruction say load to register are not from some

address.

And let us say that this instruction is executed for the first time so and then what would happen is

the data corresponding to that address which is massive present in the main memory is loaded

into the processor side by side also that same data and data which is adjacent to this particular

address is stored in the cache main memory for a subsequent load instruction which is going to

an editor to the same address or an address very close to this particular address which is stored in

the cache the processor would directly fetch that data from the cache so this fetching from the

cache memory is considerably faster and we call it a cache hit now the problem arises.

Because the cache memory is considerably smaller than main memory a typical L1 cache for

example is 32 kilobytes while the main memory could be as large as several megabytes so

therefore the cache memory stores a small subset of the main memory and there is a replacement

policy by which data from the cache is evicted and new data from the memory which is recently

being accessed is stored in the cache memory and therefore with every load instruction that is

executed by this processor we could either have a cache hit which would imply that the data is

present in the cache memory and the data can be read directly from the cache memory to the

processor or we can have a cache miss in which case the data is not present in the cache memory

and therefore has to be fetched from the main memory now the critical part over here are two

aspects first the cache memory is shared by various processes present which is executing on the

system and secondly the cache memory is considerably smaller than the main memory and

therefore there is a notion of eviction wherein the data from present in the cache is evicted a new

data which is recently accessed is stored in the cache memory so as a result we have something

known as cache hits and cache misses.

So a cache hit is considerably faster than a cache miss and the reason being that the cache hit

fetches data straight from the cache memory while a cache miss would have to fetch data from

the main memory or any other lower cache that may be present now we would have to look at

some more internal organization about the cache memory so a typical cache memory is

organized into several cache sets.

(Refer Slide Time: 8:50)

 And each cache set or as we see over here each row over here corresponds to a cache set so each

cache set could hold multiple cache lines so each of these blocks over here is a cache line a

typical cache line size in an Intel processor for instance is around is 64 bytes this particular

diagram over here shows that there are 4 cache lines present in a cache set therefore the

associativity of this particular cache is full.

(Refer Slide Time: 9:30)

Now whenever the processor executes an load or a store instruction it puts out an address on the

address bus so this could in an L1 cache this for example would be an a would be a virtual

address and the cache memory the L1 cache memory interprets this virtual address in this

particular way there are a few bits are the most least least significant bits which are used to

address a cache line there are bits which are known as the set address bits which are used to pick

one of the cache sets from this particular cache line and there are the tag bits so what happens is

that every time an address is put on the address bus by the processor the set address bits that is

this range over here chooses one of these cache sets then the tag bits in the address that is these

bits over here is used to determine if the data corresponding to this address is present in this set

now if indeed is present we get what is known as a cache hit and the data corresponding to that

address is fetched from that corresponding cache line on the other hand if you do not find that tag

present in any of these cache lines corresponding to that set then we say that there is a cache miss

the lower levels of memory either the DRAM or lower levels of the cache like the L2 or the L3

cache would require to service that particular load request.

(Refer Slide Time: 11:13)

Now let's look at what would happen when we run a program like this so let us say we have

process P2 and this process P2 comprises of multiple load instructions so we have impact eight

load instructions load A1 A2 A3 and A4 and load B1 B2 B3 and B4 further let us assume that the

set address bits corresponding to the addresses A1 A2 and A3 and A4 corresponding to this set

known as the A set so thus when for the first time you execute this particular while loop the first

iteration of this particular while loop the data corresponding to address A1 gets loaded into the

set into one of these cache lines present in the A set similarly the first execution of load A2 load

A3 and blade load A4 would fetch data and store it in this A set thus the first execution would all

the cache misses right similarly we have another for load instructions load B1 B2 B3 and B4

which get mapped to this B set so at the end of the first iteration of this particular while loop we

have all the 4 cache lines in the be set filled with this data corresponding to these four loads now

the critical aspect over here is the timing of this particular while so you notice that during the

first iteration you would get all cache misses for A as well as B so in total for this first iteration

corresponding to these 8 load instructions there will be a total of 8 cache misses.

Now for the second iteration onwards assuming that there is no other process running in the

system all of these load operations would result in cache hits the reason being that every

subsequent load to say A1 A2 A3 or A4 would directly read the data from the corresponding

cache line present in the A set similarly every subsequent load to B1 B2 B3 or B4 would directly

read the data from this B set.

(Refer Slide Time: 13:43)

The second thing you would notice is that the time taken for these loads versus these loads is

approximately the same note that we are using the word statistically over here which would

means this particular loop is run several thousands of times and the time taken for these four

loads and these four loads are compared statistically right for example taking the average

variance and so on.

(Refer Slide Time: 14:08)

Now consider another process over here process P1 now process P1 has a small loop which looks

something like this in this particular loop we have a bit if the bit equal to 1 then you load a P1

else load B P1 so if the bit equal to 1 then load the data corresponding to A in the process P1

address space gets loaded similarly over here the data corresponding to this address B in the P1

address space is loaded note that process P2 and process P1 are totally independent of each other

so relating this to the Bell la Padula model that we have studied process P1 may be a top secret

process while process P2 may be an unclassified process.

Now you note that we can transmit one bit from process P1 to process P2 using this particular

mechanism and the way we go about it is as follows let us say that a process P wants to transmit

a bit equal to 0 so what he would do is that he would set the bit to be 0 in which case there would

be a load to this particular location which gets executed now these particular addresses in the

process P1 address space is selected in such a way that they fall in the A set and the B set respect

thus for example if process P1 wants to transmit say a value of 1 to process P2 it would set the

bit to be equal to 1 and thus this particular load instruction gets executed that is the load A P1

now what would happen is that the main memory gets accessed there would be a cache miss and

one cache line gets loaded from the main memory into this A set so the process P2 data gets

evicted and process P1 data would then be filled in that corresponding cache line.

Now if we look at the execution time of these 2 sets of loads what we would see is the time taken

for executing these A loads would be greater than the time taken for these B loads statistically

again the reason be achieved this is due to the fact that we now have process P1 data present

away here as a result when these load A1 A2 A3 and A4 get executed there would be some

additional cache misses so that additional cache misses would result in increased execution time

for this part of the code on the other hand when the loads to B1 B2 B3 or B4 are executed we

similarly we as you shall get cache hits and therefore the time taken would be considerably lesser

thus to transmit a value of 1 process P1 which is which for example is a top secret process would

set the bit value to be equal to 1 which would then evict one particular cache line from the A set

and as a result would influence the execution time of process P2 and therefore execution time for

this part of the process P2 would be higher compared to the compared to the other part.

(Refer Slide Time: 17:45)

In a similar way if process P1 wants to transmit a 0 or two process P2 it would set the value of

bit to be equal to 0 thus the load P1 gets executed now B P1 as we've discussed would get

mapped to the B set and therefore it would evict one of the process P2 data present over here

thus in this particular case when a P2 continues its execution in this infinitely while loop the time

taken for the loads of B1 B2 B3 and b4 would be higher compared to the low time taken to load

A1 A2 A3 and A4 and this is due to the additional cache miss that is present in the set B in this

way process P1 can transmit in terms of bits to process P2 by just deciding which address to load

from either to load from the address A or to load from the address B and if we just extend this

particular idea we can see how a process P1 could send a large message to process P2 and the

code for the process P1 would do something like this.

(Refer Slide Time: 19:01)

So for each let us say for example process P1 wants to send a message so what it would do is that

it would have an in have a while loop and for each bit in that message it would either load from

the A location or the B location so thus we see that it is possible even though there is huge

amounts of protection or between process 1 and process 2 both by the hardware as well as the

operating system due to the shared cache memory that is present in the processor it would be

possible for one process to transfer information to another process however what is actually

required over here is that process P1 and process P2 have an agreement about the format in

which the bits are transmitted crosses P1 and P2 for example should agree upon the sets which

are used for the communication and also they would have to agree upon a particular protocol for

communicating between the two processes.

(Refer Slide Time: 20:09)

 Now cache covert channels are a big problem it is very difficult to actually identify such

problems cover channels in general are a big problem the cache covert channels are just one

example in addition to this there could be several other different types of cover channels and thus

identifying all the cover channels present in the system is quite a difficult task.

Another important aspect when we talk about coming about covert channels is the

communication rate or to quantify that covert channel here what is important for us is to measure

the rate at which data can be communicated through that particular covert channel.

(Refer Slide Time: 19:01)

For example if we go back to this particular slide communication rate of this particular channel

would be the number of bits transmitted from process one to process two per second so this

typically is very slow so for example a good number would be say one or two bits per second is

actually a very good cache covert channel so in order to eliminate such covert channels in other

design one should be able to design the system extremely careful carefully and ensure that there

is a proper separation between processes not just at the operating system level but also at the

hardware level for example to prevent the cache covert channel one should ensure that at no time

process P1 as well as process P2 are actually sharing the same cache memory in the lectures that

follow we'll be looking at other forms of cache timing attacks where algorithms such as

cryptographic algorithms can be broken and secret keys from that crypto graphic algorithm can

be stolen by means of measuring the memory access times, thank you.

