
Information Security 5 Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology Madras
Access Control in linux

Mod05_Lec29

Hello and welcome to this lecture in the course for secure system engineering, in the previous

lecture we had a brief introduction to access control and we looked at the discretionary access

control policies and how it can be implemented using capabilities, access control list and the

earliest form which was the access control matrix, so in this lecture we will be looking at

Unix security mechanisms which essentially is discretionary access control technique to

achieve access control in the Unix operating system.

(Refer Slide Time: 0:53)

So in Unix operating system you have subjects and objects, subjects are defined as users and

groups and of course we have this special subject which is the superuser or the root of the

system, processes that a user creates are also subjects and essentially the inherit all the

permissions and privileges that particular user has.

So object on the other hand can vary from files, directories, sockets, processes, process

memory, file descriptors and so on, each flavour of Unix defines a certain set of access rights

that the subject has on the particular objects, so there will be subtle variations between one

Unix flavour with respect to another.

(Refer Slide Time: 1:49)

So let us start with the Unix login process, the login process for system is started at boot time

and it runs with superuser privileges, so it request for a username and password, so when the

user enters the password a cryptographic algorithm is used on the password with the stored

salt and the result is something known as the hash of the password, now all users and their

corresponding hash passwords are stored in a file/called etc/shadow, so what happens is that

for the password that is actually entered and hash computed this is compared with the

corresponding user entry in the/etc /shadow.

Login is permitted only if there is a match between this entry with in the stored file with the

corresponding hashed password which the user enters, so once the login process successfully

completes, what would happen is that another file is accessed, so this file is the/etc /password

file which is present in the LINUX systems in particular and it contains various information

about user, for example that is something known as the uid, gid and groups.

So uid is the user identifier it is a number and it is used to uniquely identify that particular

user group is gid which is a group identifier which identifies the group in which the user

wants to and it also along with other things the/etc /password also has entries corresponding

to the home directory of that particular user and so on.

(Refer Slide Time: 3:45)

Will the look at the user identifiers or uids, each user is given a unique user identifier and a

group identifier, a uid of 0 is considered as the roots user id, now there is a system called

known as the setuid which is passed a user identifier is essentially what the system called

would do is to set the user id of a particular process, so therefore when this process execute it

will execute with the specified user id.

(Refer Slide Time: 4:24)

Now if we go back to this what you see is that the login process executes as root and was the

password is verified it will then create a shell for that particular user, so essentially this shell

is created something as follows, so you would have let us say the login process and within

this login process you obtain the password and compare the password with the stored hash

and if this is true, then we fork a process and in the child process.

What we do is that we would setuid corresponding to the users identifier and then execute the

bash shell, so what we see over here is that even though the login process executes with

superuser privileges when it actually compare this and successfully authenticates the user, it

forks a process, changes the uid corresponding to that particular user and then executes the

shell,

(Refer Slide Time: 6:17)

So therefore when the shell executes, it executes with the uid of that particular user, now

every program that gets executed by that particular user would automatically inherit the user

id from the parent process, the for all the processes that the user actually executes would have

a uid corresponding to that particular user, in a very similar way each user of that system is

also associated with a particular group and therefore associated with a group identifier.

So similar to the setuid we also have a setgid, given a group identifier which sets the group id

that particular process, now every time we fork and create a new process, which I will

process would in the group id in a very similar way as it inherits the uid of its parent process.

(Refer Slide Time: 7:12)

Two other important functions in this perspective are the sudo and su, the sudo and su, lets a

particular user eliminate the privileges of a particular process, so on a completing a sudo

successfully the process would then run with uid of 0 which would imply that it runs with all

the privileges of a root user, so which is to you an example, if you run id over here, it tells me

all the ids for that particular user.

So for example id over here tells me that the uid is 1000, my gid is 1000 and so on, now

when I do sudo id what I obtained is that the uid is 0, the gid is 0 and so on, so what

essentially is obtained over here is that a normal user who has a uid of 0 is getting privileges

to run the id command with a privilege of a root user.

(Refer Slide Time: 8:16)

So this is something for you to think about, password is a command that is run by a user to

change his or her password, since this is a password link to a particular user, it should be run

by a user and therefore the sudo permission should not be given for that particular user, in

other words the password command is executed by a user with his normal uid and does not

require to escalate privileges for that particular password.

Another point is that all passwords are stored in the encrypted form in the file/etc/shadow,

now this file comprises of all passwords of all users and therefore should not be accessed by

any ordinary user, thus in the Linux system this/etc/shadow is only owned by the root user,

now to modify a password using the password command, it would require to write to

this/etc/shadow file corresponding to the entry for that user, question to think about over here

is that how can a password program which runs as the normal user program modify a

file/etc/shadow which is owned by the root.

(Refer Slide Time: 9:42)

Now we will look at the various objects in the Unix and Linux system and we will see about

how the various access control policies for the various objects are managed in a typical Unix

system, so for example a file right, the various operations on a file are of course the creation,

read, write, execute, we also have other operations which relate to ownership, change of

permissions and change group, so one could change the ownership of a particular file by the

chown command, we can similarly change the permissions for a file with a chmode command

and change group of a file with chgrp command.

Similar kind of operations are specified for directories as well, one could create link or unlink

directories, rename a file within a directory or look up a particular directory, so in order to

manage this in the Unix system there is a small table which is maintained, where we have the

permissions read, write and execute and we also have three different varieties in order to

achieve the access control for these various files, we have the a small table which is

maintained by the Unix system.

Where we have the read, write, execute operations that are permitted on three different types

of users of that particular object, one is the owner of the object, second is the group which the

owner belongs to and the third or are all the other users, so for each of this cases we can

specify whether the file can be read, written to or executed.

So this can be specified for each file in the system as well as each directory as well, while it

makes sense to actually have a read and write a directory execute permission or X permission

on the directory has a different meaning, so it essentially means that one could lookup a

particular directory, so essentially you cannot list the contents of the directory or read the

contents of the directory but essentially you could lookup the name of that directory, in

addition to these read, write, execute bits what is specified is other aspects such as symbolic

links, directory files, sticky bits and so on.

(Refer Slide Time: 12:22)

Will now look at file descriptors, once you open a file using the open system call in which is

specify a file path along with permissions that you want to read or write or append to that

particular file and what you obtain is a file descriptor, so note that the entire security rest in

just obtaining the file descriptor, so for example once your open system call has successfully

created or open that file and you have obtained the file descriptor for that particular file after

that there are no special test that are done on that file.

You can read and write to that file without any access control test which are done, so based

on this there are two ways in which you can obtain a file descriptor, one is through using the

open system call during which access control permissions are checked by the operating

system before giving you a successful file descriptor, a second way to obtain a file descriptor

is from another process or from shared memory, for example when a process spawns a child

process than a child process would can inherit all the file descriptors.

Thus a file descriptor obtained by the child process does not have to come from an open

system call in its process but rather it is actually inheriting the file descriptor from the parent

process, another way to obtain a file descriptor is through shared memory or sockets, so this

would mean that a process could send a file descriptor to an other process through a shared

memory and therefore that second process can then read or write to the file without anymore

explicits checks done by the operating system.

So in this way what can be achieved is that I could create a particular file which is accessible

only by root users but then I could open this particular file and send that file descriptor to a

normal user who is not a root, now this normal user can then execute and read and write to

this particular file, so thus what is achieved is that a normal user can read or write to a file

which is owed by a root.

(Refer Slide Time: 14:58)

So let us look at processes, a process is both a subject and object in the UNIX nomenclature,

so the operations that can be permitted on a process is to create a process, killer process or

debug a process, so a debug is typically done with a ptrace system call that allows one

process to observe and control the other process, your typical debuggers such as the GDB or

all the different variants of GDB would typically use the ptrace system call in order to set a

breakpoints, watch, look at the various memory locations, read the register contents and so on

for the child process.

With respect to the permissions when a process gets created the child process gets the same

uid and gid as the parent, essentially the child process inherits all the parents uid and gid as

well, similarly when you are using ptrace, ptrace can debug other processes with the same

uid, thus if I use GDB for example which internally uses the system call ptrace, GDB can

only debug processes which have the same uid, therefore I will not be able to debug and other

users process, so I will only be able to debug a process which is created with my same uid,

this of course does not hold true for root, the root has access to all processes and therefore

can run GDB on every process present in the system.

(Refer Slide Time: 16:47)

So let us look at the network permissions in a Unix system, the operations permitted on a

network socket is to connect, listen, send and receive data, now with respect to permissions

related to network sockets is like a unlike files or any other devices, network sockets are not

related to uids, so this means anyone can actually connect to a machine, a particular person

does not have to have a valid user account on that machine in order to connect to do

particular machine.

So this is important with respect to say Webservers, now when we host a web server on a

particular machine, any user could actually connect to do particular machine and view the

pages on that particular web server, that user does not required to have a valid login on that

particular web server, further any process can listen to ports which are greater than 1024, for

network ports which are less than 1024, it requires superuser privileges because these ports

have linked a special system processes.

While for processes which are greater than 1024, any process within the system could

actually open and listen to that port, so once you have opened a socket successfully are no

further checks which are done and therefore you can send and receive data through that

socket without any further checks or any further permissions, thus we see the compared to

files and other objects in the Unix system, network sockets are treated in a very different way.

(Refer Slide Time: 18:30)

While the Unix access control mechanisms are quite easy to understand, quite easy to

implement and permits are lots of flexibility in the way, things are done, there are still a lot of

problems in the Unix access control mechanisms when it comes to security, one of the main

problems is that the root can do almost anything, so it can read and modify or create files, it

can read any or it can delete or modify files, it can read or execute any files, independent of

the owner of those particular files.

Now the problem with this is that if the system administrator is an trusted then it means that

the entire systems secret data can be leaked, further if the root itself gets compromised for

example if there is a buffer overflow wonderbility in one of the root programs, then that

program gets compromised and then the malware gets root access to the system and thus

compromises the entire system because the malware can read and write to all files in the

system.

Another problem with Unix access control mechanisms is that it is highly coarse-grained, so

for example more intricate access control mechanisms such as X user can run programs Y to

write to files Z is not very easily specified in this Unix access control mechanisms, further

user cannot easily defend himself against allegations, so let us say for example that a normal

user working in an organisation and he happens to run a particular program which has a

malware.

Now a malware deletes all the files of that particular organisation from that system, including

all the sensitive files, now we cannot actually blame the user for that particular incident

because it is not the users fault, the deletion of the files was done by the malware and

therefore defending against such allegations becomes difficult, another problem with the

Unix space access control mechanisms is that only one user and one group can be specified

for a particular file, often we would require more flexibility where we want two users to own

a particular file and this is not always possible with the Unix file systems.

So therefore there are multiple issues with standard Unix access control policies and there are

several variants of Unix systems which have actually migrated to more stringent measures, so

as we seen in this lecture there are various problems with the Unix access control

mechanisms and therefore many Unix flavours has actually migrated to a much better access

control policies using something known as information flow policies, so in the next lecture

we look at more details about information flow policies. Thank you.

