
Information Security 5 Secure Systems Engineering 
Professor Chester Rebeiro

Indian Institute of Technology, Madras 
Lecture 26

Demo of Integer Vulnerabilites 2

Hello  and welcome to  this  demonstration,  this  demonstration  is  also  about  format  string

vulnerabilities. 

(Refer Slide Time: 00:21) 

We will look at a code which is present in these vm that we ship along with this course, the

code is present in NPTEL course module 6, you can look it up at file call print 3 a dot c, this

code is very similar to what we have seen before essentially there is a global variable s and

what we do intend to do is to use the vulnerability in the printf which is present here and be

able to modify s.

So note that s is  a global  variable  so therefore it  by default  would be initialized to 0 so

without any vulnerabilities  or without exploiting the vulnerability  this program when this

printf executes would print as to be equal to 0 here however what we will do is that we are

going to change the user string and note that this user string is specified as a format specifier

in printf.

So we are going to modify this user string so that the value of s is not 0 or rather we will try

to change the value of s to something different. So let us see it running first or we make the



program as before make clean sorry clean and then make and then run it as print 3 a and note

that this 60 corresponds to s to make it more clearer what we can do is print 3 a dot c and just

specify that s is equal to 3 sorry s now print 3a you see that s is equal to 60.

So what has happened is that the value of s or which is supposed to be 0 has been modified

due to the vulnerability present in printf and has obtained a value of 60. So let us open the

code in a different window like this and we will also look at gdv and see exactly what is

happening, ok. So we have put a breakpoint at the start of this line and we will note a few

values over here first is let us disassemble it and note that the call to printf that is this printf

user underscore string is present at this location and the adjacent location 0804850c is the

return address from printf,

(Refer Slide Time: 03:56) 

The next thing we would look at is the address of this global variable s and that we obtain by

this p special x m percent s and we note that it has a value of 0804a028 which is essentially

this one 0804a028 arranged in little Indian notation. Now if we look at this particular into

user underscore string, so what we see is  that it  has the address of the global variable  s

present  initially  second we have a  format  attribute  percentage  54x which is  present  here

which  essentially  means  that  there  is  54  values  that  may  be  printed  and  then  we  have

percentage 6 dollar n.

So  the  dollar  n  indicates  that  at  the  location  specified  by  an  argument  the  number  of

characters that printf has printed would be filled, so what we do intend to do is that we want

to modify s with the number of characters that has been printed. So let us see over here so



each of this corresponds to a one character or so it is 4 characters that are printed by this, so

one for each of these bytes then there is a space over here so five and another space over here

six plus 54 so it is a total of sixty characters that gets printed.

So what we do expect is that when a printf executes this percentage n it fills in the value of s

with 60 and this we can see as follows. So we have got the value of s and we also have got

the value of the return from the printf that is at the address 0804850c and now we will let will

just single step through a couple of instructions we enter the printf at PLT and finally into the

printf function.

At this point we will look at the stack and print the contents of some of the contents of the

stack which would look something like this, so of the first thing you would note is that the

return address 0804850C is present over here and the address of user string which is ffffcf48

is  1  before that  ok and other  thing we note is  that  at  a  location  6 words  from this first

argument to printf at an offset of 6 words from the first argument to printf is this user string

0804a028.

So what happens is that printf would first print these four characters then it would print the

space it would leave 54 words and then it would actually print another space now when it

comes over here we have that the address of s is present, so because of the percentage n that

is in the format specifier  and printf  it  go to this address and fill  in it  the contents of the

number of characters that has been printed, in which case 60, so thus when printf completes

execution  we have s that  has  the value of  60 in  it  and therefore when we continue  this

particular execution we see that the s would get a value of 60.

Now note that every time you compile this particular program there may be slight differences

in  the  address  of  s  and other  minor  differences  in  the  address  of  user  string and so on.

Therefore even though the source code is given to you it would be good to actually use gdv

identify the exact locations of s modify the programs accordingly and then execute it in order

to get it to work, thank you. 


