
Information Security 5 Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology Madras
Heap Exploits

Hello and welcome to this lecture in the course of secure system engineering.  In today’s

lecture we will look at exploits that target the heap.

(Refer Slide Time: 0:26) 

So as we know heap is essentially a pool of memory present in the processes address space

where dynamically allocated memory resides, so every time for example that we use a malloc

in a C program a chunk of memory gets allocated in the heap and when we free that memory

then the chunk of memory gets freed, so in today’s lecture we will actually be looking at how

this dynamically allocated memory or in other words how malloc handles or manages the

memory that is present in the heap, so let us just look at this motivating example. 

So we have a small C program here and what we have here is an invocation to malloc which

request 256 bytes, so when this malloc gets invoked as we know that in the process address

space a chunk of memory of the size which is approximately 256 bytes would get allocated

and the pointer to that memory is present in buffer. Now given this particular pointer to can

read or write or manipulate data present in that heap chunk and at the end of usage we can

then free to the buffer and after the buffer is freed that chunk of 256 bytes which we have just

allocated in the heap can be used by other malloc which may be present in the program.
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So what is the difference between a heap and a stack? As you know stacks are used during

function invocations and to pass parameters to functions as well as for local variables, so

stacks essentially are fast they are fully managed by the compiler and what we mean by this

is that we do not have to explicitly have statements which says create a particular area in the

stack and free that area in the stack. On the other hand when you compile a program the

compiler would insert instructions that would allocate stack that is a stack frame and free the

stack frame every time a function is entered or returned respectively. 

As we know stacks are used as temporary data storage, so whenever a function returns then

the local variables which was allocated in the function is no more available. On the other

hand heaps are extremely slow every one allocate some memory in the heap you have to

explicitly  invoke  the  library  function  malloc  and  similarly  when  you  want  to  free  that

memory knew how to invoke the free call. 

So this management  is done by the program and quite often this  could actually  result  in

several different types of vulnerabilities as we will see during this lecture. Heaps are used for

storage of objects large array and global data and typically all you require is to have a pointer

to that particular malloc junk and you would be able to access that malloc data from any

function. 
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So what we will see in his lecture is how malloc manages the heap memory, how it allocates

memory? What are the algorithms used for this allocation? Similarly what are the algorithms

used for freeing the memory? What are the data structure used internally and so on? So there

are a different variety of malloc implementations that are present, the tcmalloc for example is

from Google, jemalloc is implementing in android operating systems and similarly you have

nedmalloc and Hoard. 

In  all  of  these  different  malloc  implementation  there  is  a  shuttle  difference  between  the

algorithm used to allocate memory and free memory as well, so essentially the algorithms

will affect the speed at which memory is allocated or deallocated versus the fragmentation of

the memory, so for instance you may have one implementation of malloc which very quickly

can allocate and deallocate memory. In other words the time taken for malloc and the time

taken  for  free  is  extremely  small  however  it  is  generally  what  is  seen.  Such  fast

implementation of malloc would quite often result in insufficient use of the heap memory. 

The concept of fragmentation of the memory sets in by which there will be tiny chunks of

memory in the heap which is not going to be used, so all of these different types of malloc

implementations. Trade-off between the speed of memory management versus the fragmented

memory by speed of memory management imply the speed with which malloc can allocate

memory as well as the speed with which free and deallocate memory quite often it is seen

that  implementations  of  malloc  where  malloc  runs  extremely  fast  would  often  result  in

fragmented memory. 



So what we mean by fragmented memory is that they would be tiny chunk of memory may

be of 2 or 4 or 8 bytes which are too small to be actually used by any program, so by these

fragmented  memory just  reside in  the heap and is  of not  much use,  so essentially  when

malloc  implementations  are  made  they  would  have  to  trade-off  between  the  memory

management scheme so as to reduce the amount of fragmentation present. 

At the same time ensure that the speed of memory management is good enough so that the

performance  of  the  application  is  not  affected  too  much.  Now  these  different  malloc

implementations also vary in the support that they provide for example the scalability which

means what is the size of the heap that the particular malloc implementation can manage. The

other aspect that comes into play is the multithreaded support, can the heap implementation

actually provide support for programs which have multithreading present in it? 

So in this particular lecture we will focus on one specific malloc implementation known as

ptmalloc2, so ptmalloc2 is very common implementation which is used in gilibc, so most

likely when you actually run your typical hello world program and you have malloc in it. It

uses gilibc and hence the malloc would invoke a function which is present in ptmalloc2. Now

all  of  these  different  types  of  malloc  implementations  originate  from  one  specific

implementation  by  Doug  Lea  you  could  actually  search  for  Doug  Lea  and  find  the  1st

implementation of malloc most other malloc implementations are derived from Doug Lea’s

implementation.
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So let us look a little more in detail about ptmalloc2 note that while this is quite common in

most recent daily Linux systems the 3rd version of that which is known as ptmalloc3 is also

present, so there are subtle differences between ptmalloc2 and ptmalloc3 and we would not

go into the details of these differences.  In this lecture on the other hand we will be only

focusing on the internals of ptmalloc2. 

Now as we know ptmalloc2 is present in the gilibc library which is linked with all standard C

or C plus plus programs that you write on a typical Linux system. Now internally ptmalloc2

uses those systems calls to obtain memory from the operating system, so the system calls are

known as  breaks  and mmap,  so  whenever  break  or  mmap is  invoked  so  it  leads  to  the

operating  system getting  executed  and  the  operating  systems  would  allocate  a  chunk  of

memory for that particular process. 

So for example if you write a C program and the 1st time you invoke the malloc call with that

C program internally what malloc is going to do is that it is going to invoke the brake system

call, so when the brake system call gets executed by the kernel the kernel would allocate a

chunk of memory of size 132 kilobytes to the particular process, so that 132 kilobytes is used

by  the  ptmalloc2  for  its  heap  space,  so  within  this  particular  area  you  have  different

components you have something known as Arena, then within the arena you have heaps and

within the heaps you memory chunks. 

So  whenever  your  program invokes  malloc  for  the  first  time  internally  ptmalloc2  could

invoke the break system call of brk, so when break gets executed it causes really operating

systems kernel  to  execute  and the  OS would  allocate  132 kilobytes  of  memory  for  that

particular  process  when  break  returns  the  ptmalloc  code  would  then  have  algorithms  to

manage that  132 kilobytes  of  memory, so that  memory is  divided into multiple  different

components,  so the largest component is known as the arena, the hyena is then split  into

heaps and then there are many chunks, right? So the memory chunks are present within the

heap, now let us 1st look of an example of how an arena is used.
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So let us look at this particular program, so as you see this is a simple program which uses

threads, so we have a statement over here where you allocate thousand bytes and then return

an address then you free that address in this particular statement you create a thread using the

pthread library and invoking the function pthread underscore create, so this function would

then create a thread which would start executing from this thread form that is present over

here,  so at  the end of this  invocation  of pthread create  we have actually  have the single

process which has 2 threads the main thread and the threadfunc thread. 

Now we invoke the pthread joint in order to ensure that the main thread waits for the thread

function to complete before continuing its execution. In other words the pthread joint would

block the main thread until the child thread or the threadfunc completes its execution and

then the function would return. Now in the thread that we just created we allocate another

thousand bytes and then free that particular thousand bytes, now we will see what happens to

the heap and we actually start executing this program? As soon as the program starts it would

be surprisingly for you to know that the size of the heap is initially 0, so essentially the

program would start with absolutely no heap segment.
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Now when  malloc  first  gets  executed  in  this  particular  statement  over  here  it  results  in

ptmalloc code that we have been talking about to get executed.  Now when this particular

statement comprising of the 1st malloc of this particular program gets executed it results in the

malloc function present in their  ptmalloc library to be invoked. Now the ptmalloc would

determining that the heap segment is 0 and then it would invoke the break system call. As we

have seen the brake system call would invoke the operating system and the operating system

would allocate  a chunk of 132 kilobytes for this particular process. Now ptmalloc would

obtain  that  132 kilobytes  it  would  split  it  into  2  parts,  now one part  is  roughly  around

thousand bytes and this… 

Now one part is roughly around thousand bytes and a pointer to this part is what is written by

a  malloc  and  assigned  to  address,  so  the  remaining  part  is  the  free-part.  Now  every

subsequent malloc from the main thread would then utilise this particular free part of memory

and therefore subsequent locations  to malloc would not To actually  request the operating

system for the memory. So this large area of 132 kilobytes which the operating system have

provided will then be used by all subsequent malloc in the main thread until that entire 132

kilobytes gets is completely utilised. 

Now when this entire 132 kilobytes of memory is completely utilised by the main thread a

subsequent malloc would then invoke the operating system again and then get a new chunk of

132 kilobytes, so in this way you see that the operating system gets invoked only when there

is no available space in the heap segment to satisfy a particular request, so what you see over

here is the memory map of the particular process, so any Linux based system if you actually



cat this particular file that is slash proc slash PID of that process slash maps it will give you

the entire virtual address space for that particular process. 

In this case the PID of the process this 1897 and therefore slash proc slash 1897 slash maps

would give you the virtual address space for that particular process. Now at this particular

point when the execution has just completed malloc, so what you see over here is that after

this particular malloc a new segment gets allocated in the program, so this segment is the

heap. Segment starts at 602000 to 623000 and if you can actually subtract these 2 you would

see that the size of this particular segment is 132 kilobytes. Also notice that you have read

write  permission  for  this  segment  which  means  that  you  could  read  the  data  from that

particular segment or write data to that particular segment. In other words it is a regular data

segment. Code cannot be present in that segment because it is not an executable segment. 

(Refer Slide Time: 16:29) 

Now when other program next invokes the free function with that particular address, what we

notice from the maps is that the heap segment is still present. Next what we will do is we will

free that particular address, in other words we are freeing this thousand bytes which has just

got allocated and what you would see from the memory maps is that even after freeing that

particular address the heap still remains the same that there is even though the heap is not

being used by this program at this particular instant of time, so what this means is that even

though  the  heap  is  not  being  used  after  this  particular  point  in  time  by  the  program,

nevertheless the heap segment is still present in the virtual address space of the particular

program.
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Next we will see what happens when you actually create a thread, so as we know and you

invoke  the  pthread  underscore  create  it  results  in  a  new thread  getting  created  which  is

present here. Now in this child thread we malloc another thousand bytes. Now it will be

surprising  for  you  to  know  that  when  you  malloc  this  thousand  bytes  what  happens  in

ptmalloc is that it would result in a new chunk of memory getting allocated, so within this

particular thread 1st invocation to malloc in that thread would again invoke the things system

to the mmap system call and obtain another 132 kilobytes, so this entire area of 132 kilobytes

which is allocated by the main thread of the program is known as the main arena. Now this

main arena is split into various sub heaps and used to satisfy various malloc invocations from

the main thread of the program. 
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Now let us see what would happen when we invoke the pthread underscore create, so as we

know pthread underscore create would create a thread function and the new thread could start

shooting this  particular  function,  so in  this  function we invoke malloc  again and request

another thousand bytes. The pointer to this thousand bytes is then stored in this local pointer

address. When the malloc from this thread gets invoked for the 1st time what would happen is

that the ptmalloc code would determining that this is a new thread and is the 1 st invocation to

malloc from that thread and therefore it will request the operating system to issue another 132

kilobytes of memory. 

So letters see what happens when we actually created thread using the pthread underscore

create function which starts a thread known as threadfunc, so the threadfunc starts to execute

from this particular function. Now when we invoke malloc in this particular function that is in

the thread function what would happen is that ptmalloc would determine that the 1st malloc

request from the new thread and therefore it would request the operating system for other

chunk of memory. 

The operating system would then allocate another 132 kilobytes for that particular thread, so

every malloc and free in this thread function will use this newly allocated region right, so this

region is also managed as an arena. Now we will look at the virtual address map for this

particular  process at  the point  when this  malloc  has got invoked we will  see that  a  new

segment  has  just  been  created,  the  segment  starts  at  7ffff  followed  by  7  zeros  to  7

ffff0021000, so you note that this particular region is also of 132 kilobytes, so every malloc

that gets created from this particular thread use this Padilla segment for its allocation. 



On the other hand every malloc that is invoked from the main thread would use this segment

for its allocation, so this allocation is where you have the main arena and this newly created

segment is where we would have arena for the thread of the thread arena, so in this way what

we see is  that it  is  likely that every thread that  we create  in a particular  program gets a

separate segment.
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Now let us look at the entire structure of this heap memory, so as we know that one of the

main  components  in  the  heap  memory  is  the  arena,  so  we  have  the  main  arena  which

comprises of the arena which is used by the main thread of the program and you could have

various thread arenas corresponding to each thread that the process invokes. Now therefore in

one  process  we  could  have  multiple  arena  arc  that  are  present,  now if  you  look  at  the

ptmalloc2 code you would see that there is a structure known as malloc underscore state

which is used to manage the arenas, now each arena can have multiple heaps. 

So if you look in the ptmalloc code and into the structure called malloc underscore state you

would see that there is an instantiation of heap underscore info which would actually be a

pointer  to  a  particular  heap.  Now let  us  look at  the whole structure  of  how the heap is

managed as we know the main component in the heap is the arena. One program could have

one or more arenas which are present, now each arena is of 132 kilobytes and these arenas are

created by invocations to the operating system. 

Now further what happens is that each arena can have multiple heaps, each of these heaps

could be possibly non-contiguous and if you look at ptmalloc2 code you would see that there



are 2 structures that are present the malloc underscore state structure is essentially used to

manage arena, so this is also known as the end I had and it is present in memory and contains

various meta data and other information to manage the arena. 

Similarly if you look at the ptmalloc2 code you also have another structure known as heap

underscore info, so this particular structure present as the meta data would be used to manage

specific heaps with an arena. Now each heap can have multiple memory chunks, so these

chunks could be allocated or unallocated which is also known as of free chunk and you could

also have something known as a top chunk for a last remainder chunk. Now we will look at

what this top chunk is and what last remainder chunk is later on but at this particular point of

time it is interesting to note that the structure that actually manages this heap memory is

known as the malloc underscore chunk, so you can look up the ptmalloc2 code and locate this

malloc underscore chunk and see all the entries that are used to manage a particular memory

chunk.
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So this particular slide shows the entire structure of ptmalloc heap this particular entry over

here is the main arena, so it is define as the struct malloc underscore state. Now within this

particular structure there is an entry known as system map which is a pointer to the main

heap, so now the main heap is actually allocated over here it is roughly slightly less than 132

kilobytes and we have top pointer which is pointing to the last block which is present in the

heap, so this top pointer can be used determine when this heap is completely full. 



Now every other arena that  gets  created would also have an arena structure,  so we have

another arena displayed over here so this is a thread arena also known as dynamic arena, so

within this  particular  thread arena we again have a struck malloc underscore state  which

essentially contains the meta data for this arena that has just got created, so in addition to the

main arena of particular process could also have many thread arenas, so over here we have

actually shown there are 2 thread arenas one in blue color and the other one in yellow, so

each thread arena is allocated to a particular thread in that process, so the thread arena is also

known as the dynamic arena. 

So as we have seen before each thread arena can contain multiple heaps, so these heaps are

linked together by linked list. So in each of these thread arenas we again have the struck

malloc underscore state which is the management block which contains the meta data for this

particular arena corresponding to each heap that is present in this arena we have a struck heap

underscore info which contains the meta data for that corresponding heap, so this particular

example corresponding to the heap present in blue we have 3 heaps that are present therefore

we have 3 heap info structures this is the 1st one, this is the 2nd one and this is the 3rd one. 

All  of  these heaps  are  linked together  in  a  link  list  and the  head of  the link list  is  this

particular area. Now all these various arena that are present such as this arena this blue arena

and this yellow arena are further linked together by a link list, so what you can conclude from

all  of  this  that  the  entire  heap segment  of  a  particular  process,  it  is  not  necessarily  one

contiguoustic  segment.  On the other hand the heap segment  in fact  comprises of various

smaller  segments which are connected by link list.  These smaller  segments comprises of

arenas and each arena comprises of heaps and all of these are then linked together by multiple

link list, now the head of all of these list is the main arena.
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Some more information about arenas in the heap there is a maximum number of arenas that

can be present in a particular process typically in a 32-bit system the maximum number of

arenas present is 2 times the number of cores present in that system, so these cores are the

processor cores present in that system. In 64 bit system maximum number of arenas that are

present in a particular process is 8 times the number of course, so for example if I am running

a 32-bit program on a 32-bit system and the number of cores present is 4 it would imply that

at most I could have 8 different arenas. 

So what this means is that if I (())(29:02) 7 threads in this program then each thread including

the main thread of the program would get a different arena. Now if I increase the number of

threads in that particular program then it would mean that you would have multiple threads

sharing  the  same  arena,  now  therefore  best  efficiency  and  fastest  malloc  and  frees  are

obtained when the number of threads are restrict to7 plus the main thread so therefore 8. Now

once you increase the number of threads beyond 8 since there is a sharing of arenas it could

result in a slight slowdown of the malloc and frees. 

This slowdown is caused due to the contention for using a particular arena when a single

arena is shared by 2 or more threads the ptmalloc code ensures that there is synchronisation

between the threads in order to use the particular arena, so a various locking and unlocking

mechanisms are implemented in ptmalloc2 to ensure that the state of the particular arena is

always consistent, so it ensures that when one thread is trying to use a malloc and that malloc

falls in a arena which is also shared by other thread then there is a locking mechanism to

ensure synchronisation. 
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So something to think about  we mentioned in the previous slide that  each process has a

maximum number of arenas that are present, now the question over here to think about is

why is there such a restriction in the number of arenas? What would happen if  we have

unlimited number of arenas that is in other words what would happen if each thread that you

create gets its own arena.
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Next we will talk about heaps which are present in an arena the memory with in a heap is

split  into memory chunks of different  sizes  and these chunks are  actually  used when we

invoke malloc and free, so the chunks are of 2 types one is known as allocated chunks and the

other one is known as the free chunks. Now the free chunks is actually stored in a linked list,



now every time we do a malloc let us say we do a malloc of 1000 bytes what would happen is

that the ptmalloc would execute it  would find the corresponding arena and then it would

determine the corresponding heap and then within the heap it would find the memory chunk

that could satisfy the 1000 bytes request. When such a chunk is found then it would allocate

that chunk to your process, so we will now look at how these allocated and free chunks are

actually organized. 
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So an allocated chunk looks something like this  when new malloc say for example 1000

bytes and this chunk gets allocated the point that gets return to the particular program is a

pointer  to  this  location  over  here.  Now prior  to  this  location  there are  some information

known as meta data, this meta data could be either of 8 or 16 bytes depending on the system

that you are running, so this meta data comprises of information about this allocated chunk. It

has the chunk size which is present over here and then it has 3 flags N, M and P flag. 

The P flag is used to determine whether the previous chunk over here which ends at this

particular point is we used or an used, now if P equals to 0 then the contents of this would be

the size of the previous chunk besides this we have 2 other flags the N flag and the M flag, so

these 2 flags are not very important for us. The M flag set if the chunk was obtained using an

mmap system call by the N flag is set if the chunk along to a thread arena. 

From memory allocation point of view when you allocate 8 bytes it would mean that the 8

bytes starts from here and end over here and besides this there would be some more meta data

bytes that gets allocated. So in a typical 32-bit system you would have 8 more bytes that gets



allocated, so in total for a malloc of 8 bytes internally ptmalloc would actually allocate 16

bytes, 8 for the actual data for the user data and 8 more bytes for the meta data.
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Now when you free a chunk of memory using the call free and giving the address then malloc

would  actually  convert  that  allocated  chunk to  a  free  chunk.  Now the  free  chunk has  a

structure which looks like this, so what is important in this structure are these 2 entries the

forward entry and the back entry, so essentially what free is doing is that it could add this

particular free chunk into a link list, so this link list could be either a single link list or a

double link list and this forward and back pointers are used to point to the previous and the

next free chunk present in the heap. 
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So this is how it will actually look like let us say this entire thing is the heap and within the

heap you have various chunks the orange color shows the allocated chunks and the blue color

shows the free chunks. Now the lines over here like this this and these lines are separation for

the various meta data that are present, so important for us are the link list which are used to

store the free chunks, so over here we are shown a w link list which actually is linked to all

the free chunks that are present in this corresponding heap memory. 

Now whenever there is a malloc that gets requested what happens first is that the ptmalloc

code would pass through this  particular  link list  and determining whether  there is  a free

chunk of memory that it can satisfy the request for malloc. If such chunk is found then that

particular data is removed from this link list and it is allocated for that memory, so thus you

see whenever there is a malloc that is done it is likely that one chunk of free memory gets

allocated on the other hand when a free occurs one of the allocated chunks gets freed and gets

added on to the link list. 

The problem with this approach is that the link list could be very large and therefore malloc

would take a long time to find the appropriate chunk to be allocated, so for example let us say

we have done a malloc of 1000 bytes then this link list has to be traversed until malloc finds

one free chunk which is at least of 1000 bytes and this could take a long time and therefore

what  this  actually  done in  ptmalloc  is  that  we do not  maintain  just  one link list  but  we

maintain multiple different types of ink list. 
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So we call this as binning, so in the ptmalloc code in fact you have various different types of

bins and each bin caters to different size of chunks that gets allocated, so for example here we

have a linked list of chunks which are of 16 bytes on the other hand we have over here a link

list of chunks comprising anything from 577 to 640 bytes, so now in this particular case when

a malloc gets invoked it can directly go to that particular link list and select the appropriate

free chunk and allocate that particular free chunk much more quickly.
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In ptmalloc2 there are different types of bins that are used most notably are the fast bins,

unsorted bins, small bins, large bins, so besides this we have something known as the top

chunk and the last  remainder  chunk. Now each of these different  bins are  managed in a

different way, so as to suite and best manage that particular memory. For example the fast

bins are single link list they are not double link list, now each of these fast bins are in 8 byte

chunks, so for example we have fast bins of 16 bytes, 24 bytes, 32 bytes and so on till 80

bytes and also in fast bins there is no coalescing. We will see what coalescing is at a later

point, essentially coalescing is used to prevent fragmentation however if you bin happens to

be the fast bin then there is no coalescing which is done. Now since it is a single link list so

there is a last in 1st out kind of operation which goes on.
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So this particular slide shows an example of fast bins, so in the main arena we would have an

array like this and each array is a pointer to a link list for example this 1st element is a fast bin

pointer  and it  is  appointed  to  her  link  list  of  chunks  which  is  of  16  bytes  this  entry  is

appointed to a link list of memory chunks of 32 bytes and so on, so whenever there is a

malloc say of 32 bytes what PT malloc would do is that it would refer to this fast bin array it

would immediately get that it is a 32 byte request it go into this location and it would pick up

the 1st available chunk over here. 

Now there is the linked list operation wherein this location is now modified so as to point to

the next available free chunk of 32 bytes, so you see that if your memory allocation is very

small and it happens to be in the fast bin then malloc works very quickly. All that is required

is just to find the offset in the fast bin pick out the 1st memory chunk that is present and do a

small link list operation.
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So in this example what we do is we malloc x which is of 15 bytes then print the value of x

and then free x then v malloc y which is of 13 bytes print y and free y, so what happens when

you execute this program is that both x as well as y, so there is a seeming function which gets

applied and both of them would end up in the link list corresponding to this 16 bytes, so when

this particular malloc gets executed totally a chunk of 16 bytes plus another 8 bytes gets

allocated and the pointer to that memory is present in x, so when this free gets invoked the

chunk gets added to the link list corresponding to the fast bin of 16 bytes. 
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Therefore we would corresponding to the fast bin of 16 bytes we would have the chunk x that

gets allocated. When we do a malloc of 13 bytes again after this free it would actually obtain

the same list entry thus what would happen is that x and y would get the same address thus

when we run this particular program we get x and y pointing to the same chunk of memory

present in the process. However this is not true if the sizes of the malloc are different for

example if you do a malloc 8 and a malloc 13 these happen to fall in different fast bin entries.

Now on the other hand if the malloc sizes are different for example here we have 8 bytes and

then 13 bytes then they end up in different fast bin thus over here x and y would get different

addresses.
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Now besides this we have unsorted bins so this is one bin which is a double link list that it

could have a chunks of any size the allocation policy used by ptmalloc is to use the first

chunk that fits when a chunk is freed it gets first added here. 
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So this is an example of an unsorted bins, so what we see over here is that there is a double

link list so therefore there is a forward pointer and are back pointer. This is an array which is

present in the main arena and the element is of type bins, so you also notice that each of these

bins are of different size, so for example now if I do a malloc of 1000 bytes it would come

over here it would find that 104 bytes is too small to satisfy the request it could come here



and it could find out that 1008 bytes is exactly enough and therefore this particular chunk

would get allocated to that request. 

(Refer Slide Time: 43:17) 

So let us see an example of the use of the first fit allocation which is present in ptmalloc, so

what we do in this example is that we malloc 2 regions one of 512 bytes which is pointed to

by a and the other of 256 bytes which is pointed to by b okay then what we do is we free a

and we malloc c which is of 50 bytes note that c is much less than the 512 bytes and 256

bytes that has been allocated previously. 

Now what happens when we free a is that a is too large to go into a fast bin and therefore it

goes  into  this  unsorted  bin  and  therefore  the  unsorted  bin  would  have  an  entry  which

corresponds to the chunk of approximately 512 bytes. Next what we do is we invoke malloc

again with a request for 50 bytes and the pointer that malloc returns is stored in c. Now in the

first fit allocation what would happen is the unsorted bin and traversed it could find that in

this unsorted bin there is a chunk of 512 bytes that is present and therefore what it would do

is it would split this chunk into 2 parts. 

So one part is slightly more than 50 bytes and this part gets allocated to c. Now the other part

which is not being used will still remain in the link list thus when we run this program this is

what we would see, we would see that the initial allocation of a and b are at this addresses

and when we actually allocate c after freeing a it could get exactly the same address that a has

obtained, so you know that both address a and c are pointing to the same location that is

9b10008. 



(Refer Slide Time: 45:19) 

Now the other bins that are present are the small bins there are 62 small bins which are less

than 512 bytes and there are chunks of 8 bytes presented in them. These bins are also circular

and doubly linked list and satisfy coalescing okay and it has 1st in 1st out.

(Refer Slide Time: 45:39) 



So there are also 63 large bins of various sizes. The top chunk is at the top of the arena and

does not belong to any bin, so it is used to service requests when there is no free chunks

available,  so  whenever  you  do  a  malloc  what  would  happen  is  that  the  malloc  would

traversed through all the various link list and if it finds that there are no chance which are

available in any of these link which can satisfy that particular malloc request then the part of

the top chunk is taken and that part is allocated for the malloc request. 

Now if  the  malloc  request  was  large  enough so  that  even the  top  chunk does  not  have

sufficient memory to satisfy that particular malloc request then the OS gets invoked and I

knew heap segment gets allocated, so this is done using the brk in maps or the sbrk system

calls. So in this way we have seen how malloc is managed internally with various arenas,

heaps, chunks and various types of bin. In the next lecture we will look at more into detail

about the free function call essentially how free allocates and the allocates memory and how

the link list are managed and in particular we will actually look at the ways to exploit this

internal aspects of malloc and how to actually create and attack on this screen. Thank you.


