
Information Security 5 Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology Madras
Format String Vulnerabilities

Hello and welcome to this lecture in the course for secure systems engineering, so in the

previous lecture we had looked at vulnerability known as buffer over read and we had looked

at a particular malware known as the heartbeat malware and evaluated it and found out how

this had utilised a vulnerability in the open SSL code to leak secret information from a server

to a client. In this particular lecture we will look at another vulnerability which is known as

the format string vulnerability, so as you know the format string is something which is used

quite often and functions such as scanner and printer and we will see that how this could lead

to a very strong vulnerability that is very difficult to actually protect against. So we will be

looking a lot of programs in this particular lecture and the code for all these programs can be

obtained from this bitbucket repository.

(Refer Slide Time: 1:18)

 Let us look at format strings used in the most popular function printf, so typical printf

invocation would look something like this, so you would have your format string present here

and within this format string you would have various format specifiers for example the one

specified over here is percentage d, so what happens now is that when printf executes it looks

out for this percentage d and corresponding to this format specifiers it would print the

corresponding argument in this case 1911. So as we know very well that there are a lot of

different types of formats specifiers which could let you print different types of formats such

as integers, hexadecimal strings, floats and so on, so a few examples are as shown over here.

Now one distinguishing feature between these various formats specifiers is that some of these

specifiers print the value that was passed for example when you have a percentage d it would

essentially mean that the value in the argument gets printed. On the other hand we have other

specifiers such as the percentage s or percentage n which considers the argument as an

address. There is one distinguishing feature between the various formats specifiers for

example a percentage t, percentage u and percentage x the arguments passed are considered

as value therefore for example when you specified percentage t it is the argument which

directly gets printed.

On the other hand we have parameter is like percentage s and percentage m were the

arguments are considered as memory addresses. In percentage s for example you specify a

memory address as the argument of a pointer as an argument and print f would go to that

particular memory actress pointed to by that particular pointer and print the string from that

memory address.

Now one characteristic feature about printf is that it can have variable number of arguments

for example in this particular printf invocation we have 2 arguments one for the format string

and the other for the argument. In a similar way we could have the same printf being invoked

with say 10 or 20 different arguments as well, so the way c handles this is by using something

known as variable arguments, so the prototype for printer looks something like this have the

printf function, the 1st parameter is the format string followed by 3 dots, so this 3 dots

indicates to the compiler that it is variable arguments.

(Refer Slide Time: 4:08)

So let us dig a little more deeper about how printer actually works, so we take this small

program where printf gets invoked and you specify a format string over here and there are 3

format specifiers percentage d, percentage d and percentage s corresponding to a, b and c, so

a and b are integers while c is a character pointer and therefore would print a string, so as we

know by now that when main invokes printf, the various parameters to printf are passed via

the stack, so the stack for this particular program would look something like this.

You would have the arguments c, b and a passed on the stack from right to left and then you

would have the pointer to the format string of this, so we have… The formats strings store in

some location in the program and you have the pointer to this particular format string which

is passed through the stack, so all of these things are filled with main and then main would

call the printf function during the call and we have seen in the previous lectures there is the

return address that gets pushed onto the stack and then printf starts to execute and then we

have the other metadata that gets pushed onto the stack such as the previous frame pointer

and so on.

(Refer Slide Time: 5:31)

Now let us look at the internals of printf. We will take a highly simplified version of printf

just to understand how printf actually works in reality a lot more things happen in printers but

for now we will just take this highly simplified version. Side-by-side we will also look at this

stack and how printf is going to use this stack and the various memory location that are

involved with this particular printf critical in printf is this statement over here va underscore

list ap which defines an argument pointer known as ap, so this argument pointer ap points to

each unnamed argument that is passed to printf.

It is initialised by this particular function va underscore start and passed ap and format, it is

initialised by this particular function known as va underscore start and argument pointer is

made to point to the first argument that is sent to printf in this case argument pointer is

pointing to a. The next thing we actually look at is this character pointer p, so character

pointer p is initialised to format, so therefore p gets…s p is efficiency pointing to this format

strength, so what happens here is that which each titration of this for loop there is a check to

determining whether p is equal to this percentage symbol if it is not equal to the percentage

symbol example in this case then the putchar function gets called and that particular character

gets printed on the screen.

(Refer Slide Time: 7:15)

On the other hand if the value of p is equal to this percentage symbol then we come into this

switch statement, the next character whether it is d, s, f and so on would then be evaluated, so

what is done here in this our case for example we have p pointing to this d character and

therefore we get into this case statement corresponding to d percentage d. We then invoke this

particular function known as va underscore arg and pass it the ap pointer we also tell this va

underscore arg that we are expecting a number which is of type integer and as we know

integer is passed by value to printf and therefore what we obtain in ival over here is

corresponding value of a that is this value a would get stored into ival then the invoke of

function to print ival. Similarly during the next invocation we also get another percentage and

then a d and therefore this case statement would get executed. Now this goes on for each

character the format string.

(Refer Slide Time: 8:38)

Finally we get this case percentage s and here things work a bit more definitely, so what we

do is we use variable argument to get this contents of this location c and this content is

essentially the pointer to the string this is c and sval is initialised to point to this particular

string. So we pass through this string and continue to print characters from the string until we

obtain the null termination character and then we break from this.

(Refer Slide Time: 9:18)

So this is how printer actually works internally now there are a lot of vulnerabilities involved

with the printf, so most common of them is due to insufficient arguments which are passed to

printf, so let us look at this particular function where we specify 3 format specifiers in arg

format string but the number of arguments present is only 2, so this typically would not be

detected by compilers during compilation or due to any other process and printf in its

function 2 will not be able to detect this issue therefore typically these kind of issues will not

be flagged by the compilers or by the function itself.

One of the most common vulnerabilities with respect to printf is an insufficient arguments are

passed to printf for example in this particular statement over here the format string specifies 3

format specifiers as seen over here however we have passing only 2 arguments, so what

happens when we execute this program is that corresponding to each of these format

specifiers printf would look at the variable arguments on the stack using the ap pointer and

print the corresponding value.

So for example the first percentage d would print the value corresponding to a, the second

percentage d would print the value corresponding to b and the third percentage d since

nothing is specified here would print whatever is present in the stack in this particular

location note that this bug cannot be easily detected by compilers first note that if a compiler

has to detect such insufficient arguments to printf it would need to know the internal details

of printf therefore it would make the compiler dependent on a specific library.

The second aspect is that these format strings can be created at runtime and therefore

compilers would not be able to detect any vulnerabilities or errors or in search dynamically

created format strings, so this particular vulnerability cannot be detected by printf as well.

The reason being is that printf in its current implementation just picks out arguments from the

stack depending on what it sees in the format specifiers it cannot detect whether the

arguments passed on the stack is indeed a valid argument or an invalid argument.

Further printf 2 will not be able to detect this inconsistency, the reason being is that printf just

picks out arguments from the stack whenever it sees a format specifiers, it would not be able

to detect whether the contents of the stack is indeed a valid argument or some arbitrary data

which is present on the stack there for this particular vulnerability although it seems very

trivial cannot be easily detected by compilers as well as the printf statements and therefore a

lot of programs may actually suffer from this kind of vulnerability.

(Refer Slide Time: 12:36)

Now let us see an example of how we can use this vulnerability to maybe crash the program,

so let us say we invoke printf with this format string like this with only percentage s and with

no other arguments passed, so the stack would look something like this way, we would had

the pointer to the format string which is pointing to a string containing all the percentage s

and after that we have some arbitrary data present on the stack which could point to any

location in the memory space as printf executes for every format specifier that is present in

the string it would pick a value from this stack and try to print the contents of the memory

location pointed to by that content of the stack it is quite likely that printf would try to access

some legal address due to this arbitrary location that it is trying to read as a result it is most

likely that the particular program which comprises of printf like this would end up crashing

when this printf executes.

(Refer Slide Time: 13:50)

 Now let us look at another example where we actually print the content of the stack, so let us

say that in our program we have printf like this which 4 percentage x and as you know

percentage x prints the hexadecimal value of its argument. Now the vulnerability here is that

we are invoking printf with 4 format specifiers but with no arguments at all, so the string…

the stack let us say would look something like this . The result this particular printf would be

as shown over here which essentially would print the contents of the stack.

(Refer Slide Time: 14:28)

So now let us increase the complexity a bit more, let us see if it is possible to use of printf

vulnerability to print any arbitrary memory location from the program. Let us take for

example this particular program, we have a global data s over here which is defined as array

and initialise to this message called this is a top secret message. Now we hope what we want

to do in this program is to be able to use vulnerability in this printf invocation to print this top

secret message what we pass printf over here is this local array user underscore string and

user underscore string is initialised in this string copy statement over here in a more realistic

situation.

This uses string could be perhaps taken from the user, it could be obtained from as a packet

through the network and so on, so in this example however we use user string initialised

using string copy and we initialise user string with this format string okay. Now note the first

4 locations, so that contains of C0, 96, 04, 08 in little Indian notation which has bought Intel

processor use these 4 bytes would be interpreted as 08, 04, 96, C0, so 08, 04, 96 and C0 is

essentially addressed for this particular string. Note that after specifying this address and we

have a couple of percentage xs and then a percentage s.

(Refer Slide Time: 16:15)

To run this particular program we compile it with minus m32 print2.c and when we run it

what we actually see is that the top-secret message gets printed on the screen, so this top-

secret message is essentially present in 08, 04, 96, C0 and which essentially happens to be s.

(Refer Slide Time: 16:36)

So let us look at what happens when printf is executing in this program, so what we need to

look at over here is the stack when printf executes. The first thing to note in this stack is that

the user string which is local to me is defined on the stack as follows this is the user string is

present the orange part, so what we see is that during the string copy function we have

initialised user string as follows 08, 04, 96, C0 essentially the address of this top-secret

message followed by a couple of percentage xs and then the percentage s.

(Refer Slide Time: 17:17)

Now we will track how printf executes and how various arguments are read out of the stack,

so we will use the pointers p which essentially is the pointer to the format string this is with

respect to the referral (())(17:30) implementation which you have seen in few slides before

and we also use ap which is the argument pointer, so when printf starts to execute with user

string as the argument the first thing p would be pointing to is this number 080996C0 which

gets printed on our terminal.

(Refer Slide Time: 17:55)

The next thing p obtain is percentage x and as we know when it obtains a percentage x it

would use the argument pointer to read the contents from the stack so in this case it is

8048566 so this value gets printed on the screen then p increments and so this ap and thus in

a very similar ways since you have other percent x here the next content of the stack that is 1a

gets printed in the output and this way as we proceed the contents of the stack gets printed on

the output terminal. Now as we progress we eventually have p pointing to percentage s, now

these percentage xs are arranged in such a way such that when p is pointing to percentage s

we have the argument pointer ap pointing to 080496C0.

This is the pointer to the secret message that we want to get printed, now since we have a

percentage s here and we know that percentage refers to a reference therefore what printf

would do is it would go to that particular location which is this location over here and start to

print this message until it obtains a slashed 0 thus what we observe on the output is the top-

secret message getting printed.

(Refer Slide Time: 19:25)

So there are several ways by which we can simplify this entire process one-way is to reduce

the number of percentage x that is required by using this particular format specifier that is

percentage N dollar s, so our string copy function is now invoked with this particular format

specifier as usual the first 4 bytes corresponds to the address of the top secret message

followed by percentage 7$s, so what this means is that when printf services this particular

format string argument it would directly pick the 7th argument from the stack. So starting

from this location the 7th argument corresponds to this address here and this is 080496C0

which corresponds to the user string and doing this the top-secret message would get printed

on the screen.

(Refer Slide Time: 20:28)

Printf can do much more than this, so printf for example can be also used to overwrite a

particular location, so in this example what we see is that there are format specifiers present

with printf that would allow you to change a value in memory. The format specifier used here

is percentage n essentially this percentage n format specifier would return the number of

characters printed so far. It is used as follows, so suppose we define i as an integer and

invoked printf using this format string. What would happen over here is that i would be filled

with the value of 5.

(Refer Slide Time: 21:11)

So using the same approach that we have done previously we can use percentage n to actually

change or modify some arbitrary memory location.

(Refer Slide Time: 21:21)

So let us take an example where we want to change the content of this s which we have

defined here so s is a global data so it should be initialised to 0 but what we want to do is use

the vulnerability with printf to change the value of s, so as we have done before we specify

this format string with the memory address of s represent initially then we have these

percentage xs followed by percentage n, so when printf actually executes this statement that

this printf user string it would fill the memory location pointed to by 080496C0 which

essentially is the address of s, so that memory location would be filled with the number of

bytes that printf had just printed. So what we have seen here is that we have been able to

change the value of s with the number of bytes that printf has actually printed so far. Now we

will take things a bit more further and what we are trying to do is change any arbitrary

memory location with any arbitrary byte value.

(Refer Slide Time: 22:32)

The way we do that is by making a small change what we say now is that we create this user

string using string copy as before we specify the memory address but here we specify an

arbitrary number such as percentage 53x followed by the percentage 7$n, so what this means

is that printf would fill the value of s with some value which is slightly greater than 53.

(Refer Slide Time: 23:00)

We can take things a bit more further and we can use this percentage hn format specifier

which will use only 16 bits, so this technique can be used to store large numbers, so what we

do here is that this integer value of s which comprises of 4 bytes that is 32 bits can be split

into 2, so we would split it into 16 bits plus 16 bits and then we would use this percentage hn

format specifier to fill in the first 16 bits followed by the second 16 bits, so consequently now

we have 2 addresses initially, the first address 080496CC is the address of s to store the lower

16 bits and the second address 080496CE is the address of s to store the higher 16 bits.

So in this way even very large values which is may be as large as 2 power 32 or so can be

filled using printf, so in this way very large values as high as 2 power 32 or so can be set into

this global variable s using the vulnerability of printf, so all of these programs that we have

just seeing is available the bitbucket repository which we should have shown at the start of

this lecture, so I suggest that you could actually look at the code and try to run it yourself and

also I would like to warn that you may require to change a few things in the coat to actually

get it running on your system the reason being that every system would have slight

differences in the way the programs would get compiled and therefore these programs that we

see here may not directly work in every LINUX system, so you may require to modify a few

statements here and there to actually get it to work. Thank you.

