Secure Systems Engineering
Program Binaries
Prof. Chester Rebeiro
Indian Institute of Technology Madras
Mod_01 Lec_02

Hello and welcome to this lecture in the course for Secure System Engineering, during this
course will be studying a lot of wonderbilities in C and C++ programs, now in order to
appreciate these wonderbilities and how attackers have been able to utilise these
wonderbilities to create exploits and malware, it is important for us to be able to understand C
and C++ program binaries, so in this course we will be restricting ourselves to just see

binaries, but a lot of this what we study here can be extended to C++ binaries as well.

(Refer Slide Time: 0:55)

Executables and Processes

#include =stdio.h=>

int main(){
char str[] = "Hello worldin®;
printf(*%s®, str);

$gce hello.c

Executed from RAM

So let us start with a small C program, so as we know this program over here defines a string
called which is initialised to hello world, and then invokes the print F function to print that
particular string. Now, in order to execute this particular program. The first thing we do is
enter these program in a text editor, save it as later say hello dot C, then the user compiler like
this GCC hello dot C which would create an A dot out executable, so this executable is stored
in the disk, so this executable has a particular format known as the ELF format or Executable
Linker Format, so at a later time when you want to execute this particular program, you run
the command dot/a dot out from your shell, when this happens, the operating system gets
invoked it loads the executable files from the hard disk and creates a process out of it which

is present on the RAM.

The process is then made to execute and you would get the string hello world printed on your
terminal, now what we could do during this lecture is to understand details about, some
details about what this EIf format is all about and we will also need to know some details

about what this process contains.

(Refer Slide Time: 2:30)

ELF Executables

#include =stdio.hs

int main({){
char str[] = "Hello worldyn®;
printf{*%s*, str);

Executable
ELE

Executed from RAM

Stored in disk
ELF Executables
(linker view)
Sgee hello.c -¢
o i T Describes the file organization
hello.o ELF Header [e”"
_- ~Section 1 I

This is an ELF | Section 2 !

{ 1 . T .
. : Object file information such
Section 3 S
Qojectle Sectiond : as code, data, symbal
f—eeton?] | table, relocation information, etc,

{ == |
| Section header table
-
.
* Helps locate all the file's sections

ref :www.skyfree,org/linux/references/ELF_Format.pdf
ref :man elf

So we will start with the EIf format or the Executable Linker Format, Elf format describes a
structure by which object files and executables need to be stored, so there are two views for
the Elf format, one is the linker view and the other one is the executable view, the linker view
is applicable for object files, while executables have the executable review, so let us start with
the linker view. So, and object file that can for hello dot C can be created by this particular

command, you do a GCC hello dot C, have a minus C option, it creates a hello dot O. Now

hello dot O is an EIf object file, it has a structure as shown over here, at the start you have an
Elf header which describes the entire file organisation, then you have various sections which
contain the code, the data, the symbol table, relocation information and so on and you also

have a section header table.

So, in the section header table, essentially there is a structure which would help you locate the
various sections present in the Elf object file. There is also a structure known as a program
header table, but this is typically not present in the object file, so we look at more details

about each of these headers, especially the Elf header and the section header.

(Refer Slide Time: 4:06)

ELF Header

Can have values relocatable object,

\dentification executable, shared object, core file

e 11386, X86_64, ARM, MIPS, etc.

virtual address where program
Machine details "\ begins execution

Section 1
Section 2
Section 3
Section 4

Pir to section header [~ = ~

- -

N nads |
Ember of section headers) Section header table J

Let us start with the Elf header, so the Elf header defines a structure with various parameters.
So here we have actually said some of the few parameters present in the Elf header. It starts
off with an identifier, so this identifier is a magic number which can be used to determine
whether the file is an EIf file, so for example all Elf objects, Elf executables, libraries and so
on would start off with this particular identifier. Then, there is entry in the Elf header which
describes the type of this particular file, whether the file is an object, an executable a shared

object or a core file, so this information is present in type.

On other entry is the Machine details, which processor was this particular file compiled for, it
could have entries like 1386, X86, 64, ARM, MIPS, and so on. What this means, for example
if I have an entry, if the entry is let us say, arm, it means that this particular object file or

executable was compiled for the arm processor.

Then you have an entry which is known as Entry, which describes the virtual address, where
program has to begin execution. So this is more applicable for executables rather than object

files or libraries.

So another important component in the Elf header is this pointer to the section header table,
so as we said in the previous slide the section header table is present as part of the Elf image

and it contains pointers to the various sections.

Also, there is an other entry called the number of section headers present in that particular
file.

(Refer Slide Time: 5:50)

Hello World’ s ELF Header

#include <stdio.h»

int main(){
char str[] = "Hello World\n";

) printf(*ss*, str); khesterfoptiplexi-ftngs readell -h hello.o

ELF Header:
Maghc: 7F 45 dc 46 82 01 01 50 08 0D 00 00 50 00 00 80
Class: ELF&4
Data: 1's complement, Little endlan
Version: 1 (current)
O /AR UNIX - System V
ABI Verslon: 0
Type: RIL (Relocatable file)
Machine: Advanced Mcro Devices X84-04
version: ox1
SgCC hello.c -¢ Entry polnt address:]
$ readelf <h hello.o start of program headers: o (bytes inta file)

Start of sectlon headers: 368 (bytes into file)
Flags:]

Sire of this header: 64 (bytes)

Sire of progran headers: o (bytes)

Hunber of progran headers:]

sire of section headers: o4 (bytes)

Bunber of section headers: 13

Sectlon header string table index: 10

So let us see the Elf header for our program that we have written, so what we do is we say,
while the program GCC hello dot C, give it the minus C option by which we get the
executable hello dot O then we run this command readelf minus H, hello dot O, the output
would look something like this, this output tells you the Elf header information for the file
hello dot O. Note that it has the magic number which essentially is the Elf identification, then
it has various other aspects, including the machine details, here it says that this object file was
compiled for AMD X86, 64, that is. This object file can be only used by AMD an Intel

machines which are configured for 64-bit.

Then you have the entry point address an importantly for us, you have this start of the section
headers which is an offset of 368 bytes into the file, also the number of section headers that
are present is in this particular case is 13, so let us look a little more detail into the section

headers.

(Refer Slide Time: 7:12)

Section Headers

[chesterpoptiplex:~/verk/S5E/sse/srelells reagell =5 hello.o
| There are 13 section hesders, starting st offset Qulld:
Contains
Section Headers:
Informalion sbout (M| Nase Type Mtr Off Sz ES Flg Lk Inf AL
the various sections [@l HULL HhRBRRDD BRDDE QdDROD DY []
[1] .text PROGBITS SB0O0200 DO0R34 PO0R3C 0O AX B B 1
[2] rel.text REL HH0R020 DROADE DRDRLR 0B n 14
[3] .data PROGATTS hoRIR0 DRDATA 0R0RND 0 WA @ @ 1
I f ! [4] .bss NOBITS 0000000 DO0OT 0000 0D WA 0 B 1
Sreadeff -5hello.o [5] .rodata PROGRITS D0R0R00 DO0ATH MMMOI 00 A B @ 1
| 6] .cosment PROGBITS FODO0R00 D007 DR0OZC 01 ME B 0 1
[7] .note,ChU=stack PROGBITS POIO0RDY DOORDT DODOND DR PRl
[8] «eh_frase PROCBITS SB000200 DO0R:R PRRRIE B A B B 4
[8] «rel.eh_frame REL HH0R0200 DRO4LE DdDRGE 0 n B4
[18] .shstrtab STRTAR 000000 DR0RA 000AST 02 [I
[11] .syatab STHTAR 0000000 000240 00OLO 19 1 94
[12] .strtab STRTAR R0R0R00 DRODTH DRIRLS 0 LI
Key 1o Flags:
W (write), A (allec), X (pxecutel, W (mergq), 5 (stfings)
6 (grosp), T (TLY), E (explude), | (umknown]
0 (extra 05 processing required) o (05 spedific), pf{proceqsor specific)
chestergopt iplex:~/work/55E/ sse/src/elfs ||

Virkal addross whars the
Saction shoukd ba loaded
" all s biscausa s 5.2 0 lle)

Y
Oftsarl and sure of T sachon

The section header table for this particular program can be obtained by running readelf with
the minus S option as shown over here that is readelf minus S hello dot O, the output looks as
follows, so these are the names, this particular column tells you the names of the various
sections present in the hello dot O object file, then you would have the type of the section and
as we see over here, there are various types of the section from starting from programming
bits which essentially contains the program or the code that was written, you could have

symbol table, you have no bits the allocation table and null and so on.

You have an other entry which is known as the address, so this corresponds to the virtual
address for the various sections within the object file, so note that since this is a hello dot O,
this is an object file, therefore each of this sections are relocatable, therefore the addresses
present over here are all zero and then you have two columns, one for the offset and other for
the size, the offset specifies, the offset within that particular Elf object where you could find
this specific section, for example, the dot text section, these two columns specify the offset
and the size for the various sections present in the object file. For example, the dot text

section is present at an offset of 34 and has a size of 3C.

So 3C here is the hexadecimal notation, so in addition to all of this columns, there are other
columns like this. For example, you have a flag column which specifies the various flags for
this particular section, so for example A and X implies that this is a stands for Alloc, allocated
while X stands for Executable, which means that the section contains executable code and

can be executed.

In a similar way, for example, you have the data section, which is 3 over here and you notice
that 3 has the flag WA, so W stands for Write, so note that the data segment is writable but

cannot be executed.

(Refer Slide Time: 9:40)

ELF Executables
(Executable view)
$gcc hello.c -0 hello
T~ Le* Deseribes the file organization
hello ELF Header "
T Program header table - - = - = Helps locate all the file’s segments
Segment 1 1
b~ 5 I
This ':'.la” B S ::: | Object file information such
R : as instructions, data, symbol
\ Segment4 | table, relocation information, etc.
— I
\u

ELF Executable View

ref :www.skyfree,org/linux/references/ELF_Format.pdf
ref :man elf

Now that we have seen the linker view of an Elf format, we would now look at the executable
view, so the executable view is applicable for Elf executables, to generate an Elf executables
for hello dot C, you could run this command like this or GCC hello dot C minus O hello, so
this creates an Elf executable, a very similar to the A dot out, which is called Hello, so the
hello executable has a format like this, so note that this format is very similar to the linker

view, except that there are few changes.

First, you would notice that the sections in the linker view now called segments, further you
will note that the program header table is now applicable now, while in the linker view this
program header table was not, although it was present, it was not used, while in the
executable view on the other hand, they section header table is not used. So as before the EIf
header describes the file organisation of this executable and has a very same structure as what
we have seen previously for the linker view. The Program header table helps to locate the
various file segments, while the various segments present could be used for code, an

instructions, data, symbol table, relocation information and so on.

(Refer Slide Time: 11:16)

Program Header
(executable view)

« Contains information about each
segment

s One program header for each segment

ELF Header
Program header table
Segment 1
Segment 2

Ny
e E IHuadS
"‘-._,___‘___‘-‘

Segment 4

So we will look how the program header table looks like, so the program header table
essentially contains various programs headers for the various segments, there would be one

header corresponding to each segment.

(Refer Slide Time: 11:30)

Program Header Contents

[_T_}_—» type of segment (loadable segment / shared lib /etc)
Offset of segment in ELF file
‘—* Virtual address where the segment is to be loaded
physical address where the segment is to be loaded.
(ignored)

™ Read / write / executable

So the contents of a program header would look something like this, so it is also define by a
structure and has various entries and each program header is associated with one program
segment, so the contents of the program header is as follows, there is a type entry which tells
you the type of that particular segment, whether that segment is a loadable segment is a

shared library and so on.

There is an entry called the offset which tells you the offset in the EIf file, where that segment

is present.

There is a virtual address entry which tells you where that segment has to be loaded in the
process during the execution time, at what location should that segment be loaded in the

entire virtual space.

There is also physical address offset which specifies, which physical address that the segment
should be loaded and most of the cases. This particular entry is ignored and we have the

memory management unit of the processor which takes care of managing the physical

address.

Beside this, you have the size of this particular segment in the file and also the size of the
segment when it is loaded into memory and additionally you have flags for this particular

segment, which specifies whether that segment can be read, written to or can be executed.

(Refer Slide Time: 12:59)

Program headers for Hello World

chesterdopt iplexi~/work/S5E/sse/src/elts readelf -1 hello

$ readelf -| hello ELf file type is EXEC (Executable file)

Entey point BxBR40IN
There are § program headers, starting at effset 52

Progras Headers:
Type Offset Virthddr Physhddr FileSiz MeaSiz Flg Align
Hiod DaBb0U34 RxOBR4BO34 DxDBR4RRIE BxBI20 BxBBI20 R E Dad
INTERP 000154 PxEMBIS dnDBMAA15E RON1] Mxdd01I R Bu1
[Requesting progras interprater: /Lib/\d-linux, s0.1]
04D BabbRdbd dx0ERAERD0 AxDEMAERR0 Rxd@Sdd BxBRSAR R E DulbBd
LoaD Oxdi0 180 dxDBR4OFDD AxOBAOTON B0ill Dxddilc B 021000
DYRAMIC DaBBRT14 ExDEBLOT14 DxDBBL0T1L RxOObel DxddBeE AW Did
NOTE DxBO00160 SxOBBABTLE MxDABLDNE rOBMAL 0xPODA4 B Oud
CHU_EH_FRAME B ExDBBABATS DedBbAR4TS BxdBblc BxBBle B Bud
GNU_STACK 0000 Px0000000 2xDRVD0R0D Ax0AV0D Dx2V002 AWE 0u10
GHU_RELRD DxB00180 SxDBB40TE0 MxOABADION Bc0BATH 0xB00TE B 0xl

'Sﬂtlun to Segsent magping:
Segaent Sectisns...
"
n <lnterp
W2 .interp .mote.ABI-tay .note.gnu.build-id .gnu.hash .dynsys .dynstr
i e _trang_har g frase
Mappmg between N (1] «init_array .find_array .jer .dynamic .got .get.plt .data .bss
segments and sections WL eynanic
05 .note.ABI-tag .nate.pnu.bulle-id

"% Leh_frame_hdr

-
=

(L] «init_array .fini_srray .jer .dynamic .got

So let us take the hello dot C file again, create an executable hello and then read the program
header information, so the program header information for the hello program could be write
like this, so readelf with the minus L option and then the executable and you get an output
like this way, so note that there are 9 program headers, these are the 1 to 9 headers, it contains
an offset into the file where these segment, for each of the various segments, it has a virtual
address, where each of these segments should be loaded when executed, this physical
addresses also present, but it is not used, it also has the file size and the memory size and the

flags present.

So for example you see that there is this section over here, which is read and executables, so
this is a text section, so this is a, this particular section has code and you would be executing
from this particular section, additionally, an important aspect over here is this particular part
that creates a mapping from the section to the segment, so for example the segment 2

contains all of this sections.

Similarly, section 5, as this section dot note dot ABI tag, dot note gnu dot build and so on, so

essentially every section present in the program gets mapped to a particular segment.

(Refer Slide Time: 14:32)

Contents of the Executable

. . Finciote atiio >
$ objdump disassemble-all hello > hello Jst | #inciude <stdio
int main(}{
char str[] = "Hello Worldyn®;
printf(*ss", str);

09048410 g inm:

BldBd1d: 55 L

BdBdle: B v Resp, W

BB LX) AT T110, N
80484231 Blec 20 $0120, %

BRdB426: 413656 v $0xBchebian, Bxl3lhesp)
BB L1

BRdB4Te 44 24 17 61 20 57 v HuET5TI061, 0x17(hesp)
BRB415:]

BRdB436: 44 34 1b 72 Bc B4 $8xaB4Bc72, Bxlbihesp)
BB]

BB4843e! 4824 11 00 $0u0, 0xi f (N2 sp)

[LR Bd 44 24 13 Bxl3(%esp) W

BBEMT: B 44 24 M4 eax, bud{hesp)
BRdBadL; B4 24 BN v H0xERABATR, (vaip)
BRdB4S2: % BbdB210 < Bplts
BR4Ba5T:

BRB458;

80484591 66 50
BB 66 90
L1112 EH 66 58
BBt "

- -
e

So now let us go a little more detail into the contents of the Elf executable, so what we do is
we take the hello executable that we have created and we could actually create the
disassemble for that particular executable, so by the running the command like objdump
disassemble all hello and saving the output in this file called hello dot list, we would be able
to get the complete disassembly for the Elf executable, so what here is a small snippet of that

hello dot list file and it is only dealing with this particular mean program over here.

So what we see over here is the assembly level instructions for this mean program, so what
we see at this particular, in this particular column is the virtual address, while in this columns
are the corresponding instructions, so notice that over here, there is a call to print F at the LT,
we will see what this actually means in a later class, but for now, we can understand this is
the call to the print F, which is made over here, similarly, there are other instructions which

are used in this mean particular, mean function.

Another important aspect for us is this column over here, which gives you a series of
numbers like 59, 89, E5 and so on. What these numbers actually represent are the machine
level codes corresponding to each of this functions, so for example this number 55 implies
push percentage EBP, so in another words, when the processor sees an instruction encoded as
55, it would imply that it has to push this register EBP into this type, similarly, if it sees the
sequence of numbers 89, EC and 20 present in the instruction it would imply that the

instruction is subtract 20X from the stack pointer.

(Refer Slide Time: 16:43)

ELF Executables

#include =stdio.hs

int main{){
char str[] = "Helle Worldyn®*;
printf(*%s", str);

Process

Y Executed from RAM
Stored in disk

Okay, so now we would move from the Elf executable to processes, so we would see what
happens when you do, when you run dot/a dot out on your shell we would see how the
process gets created and we would see how the Elf executable gets transferred from the disk

into your RAM.

(Refer Slide Time: 17:03)

Creating a Process by Cloning
(using fork system call)

int p;

Parent
process

p.= fork({);
if (p>0){
& printf (“Parent : child PID = &d", p):
é. p = wait();
%‘ printf(“Parent : child id exited\n", p):
o, } else{
Q{F printf(“In child process”);

execlp(“helle”, ™", NULL);
exit(0);

p=child's P| =0 1

So when you give the command/a dog out and you shell let us see what happens internally,
how your program gets executed. So when the shell receives your command, it would run a
function which looks something like this, the function would invoke a fork, which is a system
call and it invokes the operating system, the OS would then create a child process like this, so
this predictor trail shows the your shell and when the fork system calls get created is, at child

process gets created.

So now you have two processes, in the parent process, the value written by fork that is P has
the child’s PID and this is a value which is greater than zero, now in the child process P has a
value equal to 0, therefore, the parent process would execute this part of the code while its

child process would execute this part, which is present in green.

Now, in the child part of the code, there is a second system called that is get invoked which is
the egsig system where the executable hello is specified, so this is the hello world program
that you need to execute at the same time, the parent process invokes the weight system

called so as to wait until this child process completes its execution.

(Refer Slide Time: 18:42)

Process Virtual Memory Map

[#include estdin.hx
#include <stdlib.h>

MAX_SIZE
calls; m -
fact{int a, b { Vo
callges;
if (s=ml) return;
sheshaeg
fact(a - 1, b); Heap
}
main(}{ Data
n,
seant("sd®, Gn);
® = malloc(sizeof(int));
el Text
tact(n, n); (instructions)
printf{"Factorialisd) is %d\n®, n, =)}
treeln);
0

Program Virtual Memory Map

So let us look a little more in detail about the egsig called when it is executed by the
operating system, so when the egsig system called is invoked in the operating system, the OS
would create a new virtual address base for the new process. It would then load a segments
from the executable file stored on the hard disk and copy them into the virtual address base,
for example, all the segment comprising of the instruction and code are copied into this text

segment, all the data, the global data and the static data are copied into this data segment.

Now we have taken here a small program, so this particular program computes the factorial
of an integer in by this function fact which is essentially a recursive function, when this
program is compiled and Elf executable gets created and when this program gets run the
virtual address space for this program gets created by the operating system, the OS would
load the code segments of this particular program into this text segment, it would load the
global data such as calls into the data segment and whenever there is a malloc like this, which

is dynamically allocated data, so this data gets allocated into the heap.

So finally we have this text segment, which comprises of the local variables, so in the
function main, the local variables are N and M, so this local variables are present in the stack,
so besides these, the stack also contains various aspects of function invocation and para
meters processing from one function to another, so details about this virtual address base can

be obtained from the proc directory present in your Linux operating systems.

(Refer Slide Time: 20:28)

Process Virtual Memory Map

chesterBoptiplexi~§ ps -ae | grep hello

6757 pts/25 00:00:00 hella

chestergoptiplex:~§ sudo cat fproc/6757/maps

08048000-00045000 r-xp 00000000 0B:07 2491006 /home/chester/work/SSE/sse/src/ell/hello
0B040000-00045000 r-xp GOOBOR0D 08:07 2491006 /home/chester/werk/SSE/sse/sre/eli/helle
BB04abRR-R004bDOR rexp DOODIOND B: 07 2491006 /home/chester/work/55E/sse/src/elf/hello
17551000-17520000 rwxp 00000000 00:00 0

175a0008=17740000 r=xp GOO0O00 0O:86 200150 /Lib/i306-1imux-gou/libe-2.19.30
774b000-1774d000 r-xp 00120000 0B:06 208150 /1ib/i386-1inux-gnu/libc-2.19.50
17740000-1774e000 ruxp 80100000 0B:05 200150 /18b/1306-1inux-gnu/1ibe-2.10.50
f7742000-17751000 resp D00000M0 00:00 0

f7773000-17777008 raxp 00000000 00180 B

17777008-17776000 r-xp D0OO0H0 00:00 @ [vdso]

f7770000-17790000 r-xp DO0BAOND 0B:06 200158 /Lib/i386-1inux-gnu/1d-2.19.30
17798000-17759000 r-xp 00011800 08:06 200158 /1ib/i386~1inux-gnu/1d-2.19.50
17790000-17750000 roxp DOO20000 08:06 280158 /Lib/106-1inux-gau/1d-2,19.50
F18U5000- 11056000 rxp D0ODOR00 00:00 0 [stack]

cnenerpuplu:ﬂ L J
Virtual address \
memory range ; ;
| lags Device details
(offset in file; device number; inode)

On a Linux system, we would be able to look at the virtual address base by the hello world
program is executing, so this is done as follows, first we need to get the PID of the hello
world program, so for that we could run PS minus AE and grep hello, so we get a line like
this, where we see that the process hello is present and it has a PID 6757, now the file/proc
6757/maps contains the virtual address base for this PID 6757, which corresponds to our
hello executable, so the virtual address map looks something like this way, so as you can see
that there are various segments that are present, some which are present in the hello program
itself, some which are present in the Lipsey library while the other are presenting in the

loader library, also present is the stack and some internal segments like the VDSO.

Now this particular column present here specifies the various a virtual address ranges for the
various segments, so for example we have in the hello executable, we have a segments which
starts at 08049000 to 0804a000, the second column specifies the various flags for each
segment, so for example this particular segment which is present in hello has the, is readable,
writable and executable while they segment cannot be written to, it is only read and write

flags are set.

Now these three columns specifies details about from where the segment was actually loaded
from, so for example this columns specifies the offset in the Elf file from a particular segment
was loaded, now this particular columns specifies the hard disk number or the device number,
which is a major and the minor number for that particular disk, from where this particular
library was loaded and this one, this last column over here specifies the inode number, which

is essentially an identifier in the disk for this particular library.

So we have all of this information completely specifying the virtual address map for a
particular process, so one thing to note is that for this text segment, we see that the offset in
the file, device number and the inode is zero, so this is because the text segment is created
dynamically at runtime and the Elf executable and the Elf object files do not have any motion
about stack, now we will look a little more in detail about how the stack is managed in the

program.

(Refer Slide Time: 23:47)

Stack Frames
Stack

main locals

de «stdio.h>
& <stdlib.he

EITLITR T I

calls;

%esp)

fact{int 8, b {
callses;
if amwl] return;
theshaeg
factia - 1, bl;

main{}{
n, w8

seand(*sd®, nl;
® = malloc(sizeof(int));
PC = = 1;
factin; n);
print!(“Factorialisd) is sd\n®, n, wm);
treein);

Program
Sesp : stack pointer
%ebp : frame polnter

So now we will see how the stack of a program is managed during the execution of the
program, so we will take as an example, this particular program, which comprises of two
functions, a main function and fact function, objective of this particular program is to
determine the factorial of this number N which is specified by the user and the way this
factorial is computed is by the function fact which is a recursive function that gets invoked
until a becomes one, so note that fact takes two parameters, one is int A and another one is a
pointer and the other one is an int star B, to understand how the stack is manage we would
have to know about two registers, one is the stack pointer register which is denoted as ESP
and the other one is the frame pointer register which is denoted EBP, now we have represent
this stack by this particular diagram, so we have a frame pointer, pointing to a location in the
stack and we have a stack pointer, pointing lower down in the stack, every time we push
something onto this stack, the stack pointer address reduces as we keep pushing into the

stack.

While as we pop from the stack, the stack pointer address keeps incrementing again, so we

further define something known as an active frame which comprises of the region between

the base pointer to the stack pointer, when the main function gets executed and let us assume
that the program counter is pointing to this particular location, now when the main function is
executing and the program counter is pointing to this particular instruction, then we have this
thing as the active frames, so we called this as a main stack frame and it is the active frame

because it is between the base pointer and the stack pointer, so this region is the active frame.

Now in this region, we have all the locals that are present in main to the present over here that
is the locals N and M are mapped to regions to memory regions present in this area, now let

us see what happens when the function fact gets invoked.

(Refer Slide Time: 26:15)

Stack Frames

Stack

main locals

[#incluge <stéio.hs
#include estdlib.hs

calls;

fact{int 8, int whj{
callses;
if (p==l] return;
wbowab e o3
factis = 1, bl;
}

esp

main{}{
t n,

scant(%", &A);
® = malloc{sizeat{int)};
wmel;
PC = factin, a);
printf("Factorialind) is wa\n", n, #a);
freeln);

Program
%esp : stack pointer
%ebp : frame pointer

The first thing that main would do is to push the para meters N and M onto the stack and then
it would called the fact function, the call instruction would automatically push the return
address onto the stack, so the return address would be the instruction just following the fact
function and it would indicate the instruction to be executed soon after fact returns, so
therefore after the call to the fact function, you would have a frame, an active frame which
looks like this, there are the main the locals of the main function that is comprising of N and
M, you would have a para meters to the fact function, which here again would be a copy of N

and M, and then you would have the return address.

(Refer Slide Time: 27:06)

Stack
#include wstdio.hx LY
#include <stdlib.h> 1)
main locals \
int ealls; 4
\
\
PC—fwoid fact{int &, int sb){ 1
callges; i
if (smml) return; ¢
factls - 1, b); R =
} sebp a o
-
int mainll{ A
int 0, «&; o 3
fact locals g g
seant("%d", En); %esp e
» = malloc(sizeof(int)); =t
LR
factin; n);
print!("Factorialind) is %d\n®, n, a);
freeln);
Program

Sesp : stack pointer
%ebp : frame pointer

The next thing, what happens is that the fact function starts to execute, so the first thing that
the factors is to copy the frame pointer which was previously pointing to this location, so this
frame pointer gets copied onto the stack and then the frame pointer is moved to this location,
so now what we have seen is that we have got a new frame and this is now the active frame
and it is we call it as the stack frame for the fact function, the locals for the fact function are
then present on the stack and its bit, these locals are present between the base pointer and the

stack pointer, so as the fact function executes it will recursively invoke the fact function, so in

a very similar way as we have seen before.

(Refer Slide Time: 27:59)

Yoesp

Stack
#include <stdio.h»
#include =stdlib.h>
main locals
int ealls
PC—3void factlint u, int sb){
callses;
if (awsl) returni
L H 65
}
int mainl}{
int n, . mm
seant (", &)
» = malloc(sizenf{int));
wmel;
factin, n);
printf("Factoriolind) iz Sd\a®, n, #a);
A Return addres:
} S6ebp
Program
stack pointer fact locals
frame pointer %esp

Yebp:

uaizesoau pu||)
awely 1oe4

Stack Frames

Stack

#include =stdio.he
finclude <stdlib.h>

nt ealls;

PC—fwoid fact{int &, int sb){
callges;
if (awwl) return;
sho= sbhow g
factia - 1, bl;
}

int mainl}{
At n, ea;

seant("%d", En);

® = malloclsizecflint));

|l

factin; n);

printf("Factorialitd) is %d\n®, n, wm);
freeln);

{uollzaau! 1s1)
awesy y9e4

Program
Yesp : stack pointer
%ebp : frame pointer

When the fact function gets invoked again para meters to the fact return address and the
previous EBP gets pushed onto the stack and similarly there is space present for this fact
locals, so on the first return from the stack the previous base pointer which is pointing to the
previous frame gets loaded into the base pointer and therefore we would get the new fact

frame.

With this, we have given a small introduction to EIf loader and executable formats and then
we have also seen how processes execute and load this executes Elf executables and create a
virtual address basis and finally we have seen how the stack in the program operates, so one
thing for you to think about is about the command line arguments, so as we know the main
function actually takes a two para meters, one is an aug C and an aug V, so one thing that you
could think about is how are these arguments actually passed from the command line that is

from your shell to your program. Thank you.

