
Secure Systems Engineering
Program Binaries

Prof. Chester Rebeiro
Indian Institute of Technology Madras

Mod_01 Lec_02
Hello and welcome to this lecture in the course for Secure System Engineering, during this

course will be studying a lot of wonderbilities in C and C++ programs, now in order to

appreciate these wonderbilities and how attackers have been able to utilise these

wonderbilities to create exploits and malware, it is important for us to be able to understand C

and C++ program binaries, so in this course we will be restricting ourselves to just see

binaries, but a lot of this what we study here can be extended to C++ binaries as well.

(Refer Slide Time: 0:55)

So let us start with a small C program, so as we know this program over here defines a string

called which is initialised to hello world, and then invokes the print F function to print that

particular string. Now, in order to execute this particular program. The first thing we do is

enter these program in a text editor, save it as later say hello dot C, then the user compiler like

this GCC hello dot C which would create an A dot out executable, so this executable is stored

in the disk, so this executable has a particular format known as the ELF format or Executable

Linker Format, so at a later time when you want to execute this particular program, you run

the command dot/a dot out from your shell, when this happens, the operating system gets

invoked it loads the executable files from the hard disk and creates a process out of it which

is present on the RAM.

The process is then made to execute and you would get the string hello world printed on your

terminal, now what we could do during this lecture is to understand details about, some

details about what this Elf format is all about and we will also need to know some details

about what this process contains.

(Refer Slide Time: 2:30)

So we will start with the Elf format or the Executable Linker Format, Elf format describes a

structure by which object files and executables need to be stored, so there are two views for

the Elf format, one is the linker view and the other one is the executable view, the linker view

is applicable for object files, while executables have the executable review, so let us start with

the linker view. So, and object file that can for hello dot C can be created by this particular

command, you do a GCC hello dot C, have a minus C option, it creates a hello dot O. Now

hello dot O is an Elf object file, it has a structure as shown over here, at the start you have an

Elf header which describes the entire file organisation, then you have various sections which

contain the code, the data, the symbol table, relocation information and so on and you also

have a section header table.

So, in the section header table, essentially there is a structure which would help you locate the

various sections present in the Elf object file. There is also a structure known as a program

header table, but this is typically not present in the object file, so we look at more details

about each of these headers, especially the Elf header and the section header.

(Refer Slide Time: 4:06)

Let us start with the Elf header, so the Elf header defines a structure with various parameters.

So here we have actually said some of the few parameters present in the Elf header. It starts

off with an identifier, so this identifier is a magic number which can be used to determine

whether the file is an Elf file, so for example all Elf objects, Elf executables, libraries and so

on would start off with this particular identifier. Then, there is entry in the Elf header which

describes the type of this particular file, whether the file is an object, an executable a shared

object or a core file, so this information is present in type.

On other entry is the Machine details, which processor was this particular file compiled for, it

could have entries like i386, X86, 64, ARM, MIPS, and so on. What this means, for example

if I have an entry, if the entry is let us say, arm, it means that this particular object file or

executable was compiled for the arm processor.

Then you have an entry which is known as Entry, which describes the virtual address, where

program has to begin execution. So this is more applicable for executables rather than object

files or libraries.

So another important component in the Elf header is this pointer to the section header table,

so as we said in the previous slide the section header table is present as part of the Elf image

and it contains pointers to the various sections.

Also, there is an other entry called the number of section headers present in that particular

file.

(Refer Slide Time: 5:50)

So let us see the Elf header for our program that we have written, so what we do is we say,

while the program GCC hello dot C, give it the minus C option by which we get the

executable hello dot O then we run this command readelf minus H, hello dot O, the output

would look something like this, this output tells you the Elf header information for the file

hello dot O. Note that it has the magic number which essentially is the Elf identification, then

it has various other aspects, including the machine details, here it says that this object file was

compiled for AMD X86, 64, that is. This object file can be only used by AMD an Intel

machines which are configured for 64-bit.

Then you have the entry point address an importantly for us, you have this start of the section

headers which is an offset of 368 bytes into the file, also the number of section headers that

are present is in this particular case is 13, so let us look a little more detail into the section

headers.

(Refer Slide Time: 7:12)

The section header table for this particular program can be obtained by running readelf with

the minus S option as shown over here that is readelf minus S hello dot O, the output looks as

follows, so these are the names, this particular column tells you the names of the various

sections present in the hello dot O object file, then you would have the type of the section and

as we see over here, there are various types of the section from starting from programming

bits which essentially contains the program or the code that was written, you could have

symbol table, you have no bits the allocation table and null and so on.

You have an other entry which is known as the address, so this corresponds to the virtual

address for the various sections within the object file, so note that since this is a hello dot O,

this is an object file, therefore each of this sections are relocatable, therefore the addresses

present over here are all zero and then you have two columns, one for the offset and other for

the size, the offset specifies, the offset within that particular Elf object where you could find

this specific section, for example, the dot text section, these two columns specify the offset

and the size for the various sections present in the object file. For example, the dot text

section is present at an offset of 34 and has a size of 3C.

So 3C here is the hexadecimal notation, so in addition to all of this columns, there are other

columns like this. For example, you have a flag column which specifies the various flags for

this particular section, so for example A and X implies that this is a stands for Alloc, allocated

while X stands for Executable, which means that the section contains executable code and

can be executed.

In a similar way, for example, you have the data section, which is 3 over here and you notice

that 3 has the flag WA, so W stands for Write, so note that the data segment is writable but

cannot be executed.

(Refer Slide Time: 9:40)

Now that we have seen the linker view of an Elf format, we would now look at the executable

view, so the executable view is applicable for Elf executables, to generate an Elf executables

for hello dot C, you could run this command like this or GCC hello dot C minus O hello, so

this creates an Elf executable, a very similar to the A dot out, which is called Hello, so the

hello executable has a format like this, so note that this format is very similar to the linker

view, except that there are few changes.

First, you would notice that the sections in the linker view now called segments, further you

will note that the program header table is now applicable now, while in the linker view this

program header table was not, although it was present, it was not used, while in the

executable view on the other hand, they section header table is not used. So as before the Elf

header describes the file organisation of this executable and has a very same structure as what

we have seen previously for the linker view. The Program header table helps to locate the

various file segments, while the various segments present could be used for code, an

instructions, data, symbol table, relocation information and so on.

(Refer Slide Time: 11:16)

So we will look how the program header table looks like, so the program header table

essentially contains various programs headers for the various segments, there would be one

header corresponding to each segment.

(Refer Slide Time: 11:30)

So the contents of a program header would look something like this, so it is also define by a

structure and has various entries and each program header is associated with one program

segment, so the contents of the program header is as follows, there is a type entry which tells

you the type of that particular segment, whether that segment is a loadable segment is a

shared library and so on.

There is an entry called the offset which tells you the offset in the Elf file, where that segment

is present.

There is a virtual address entry which tells you where that segment has to be loaded in the

process during the execution time, at what location should that segment be loaded in the

entire virtual space.

There is also physical address offset which specifies, which physical address that the segment

should be loaded and most of the cases. This particular entry is ignored and we have the

memory management unit of the processor which takes care of managing the physical

address.

Beside this, you have the size of this particular segment in the file and also the size of the

segment when it is loaded into memory and additionally you have flags for this particular

segment, which specifies whether that segment can be read, written to or can be executed.

(Refer Slide Time: 12:59)

So let us take the hello dot C file again, create an executable hello and then read the program

header information, so the program header information for the hello program could be write

like this, so readelf with the minus L option and then the executable and you get an output

like this way, so note that there are 9 program headers, these are the 1 to 9 headers, it contains

an offset into the file where these segment, for each of the various segments, it has a virtual

address, where each of these segments should be loaded when executed, this physical

addresses also present, but it is not used, it also has the file size and the memory size and the

flags present.

So for example you see that there is this section over here, which is read and executables, so

this is a text section, so this is a, this particular section has code and you would be executing

from this particular section, additionally, an important aspect over here is this particular part

that creates a mapping from the section to the segment, so for example the segment 2

contains all of this sections.

Similarly, section 5, as this section dot note dot ABI tag, dot note gnu dot build and so on, so

essentially every section present in the program gets mapped to a particular segment.

(Refer Slide Time: 14:32)

So now let us go a little more detail into the contents of the Elf executable, so what we do is

we take the hello executable that we have created and we could actually create the

disassemble for that particular executable, so by the running the command like objdump

disassemble all hello and saving the output in this file called hello dot list, we would be able

to get the complete disassembly for the Elf executable, so what here is a small snippet of that

hello dot list file and it is only dealing with this particular mean program over here.

So what we see over here is the assembly level instructions for this mean program, so what

we see at this particular, in this particular column is the virtual address, while in this columns

are the corresponding instructions, so notice that over here, there is a call to print F at the LT,

we will see what this actually means in a later class, but for now, we can understand this is

the call to the print F, which is made over here, similarly, there are other instructions which

are used in this mean particular, mean function.

Another important aspect for us is this column over here, which gives you a series of

numbers like 59, 89, E5 and so on. What these numbers actually represent are the machine

level codes corresponding to each of this functions, so for example this number 55 implies

push percentage EBP, so in another words, when the processor sees an instruction encoded as

55, it would imply that it has to push this register EBP into this type, similarly, if it sees the

sequence of numbers 89, EC and 20 present in the instruction it would imply that the

instruction is subtract 20X from the stack pointer.

(Refer Slide Time: 16:43)

Okay, so now we would move from the Elf executable to processes, so we would see what

happens when you do, when you run dot/a dot out on your shell we would see how the

process gets created and we would see how the Elf executable gets transferred from the disk

into your RAM.

(Refer Slide Time: 17:03)

So when you give the command/a dog out and you shell let us see what happens internally,

how your program gets executed. So when the shell receives your command, it would run a

function which looks something like this, the function would invoke a fork, which is a system

call and it invokes the operating system, the OS would then create a child process like this, so

this predictor trail shows the your shell and when the fork system calls get created is, at child

process gets created.

So now you have two processes, in the parent process, the value written by fork that is P has

the child’s PID and this is a value which is greater than zero, now in the child process P has a

value equal to 0, therefore, the parent process would execute this part of the code while its

child process would execute this part, which is present in green.

Now, in the child part of the code, there is a second system called that is get invoked which is

the egsig system where the executable hello is specified, so this is the hello world program

that you need to execute at the same time, the parent process invokes the weight system

called so as to wait until this child process completes its execution.

(Refer Slide Time: 18:42)

So let us look a little more in detail about the egsig called when it is executed by the

operating system, so when the egsig system called is invoked in the operating system, the OS

would create a new virtual address base for the new process. It would then load a segments

from the executable file stored on the hard disk and copy them into the virtual address base,

for example, all the segment comprising of the instruction and code are copied into this text

segment, all the data, the global data and the static data are copied into this data segment.

Now we have taken here a small program, so this particular program computes the factorial

of an integer in by this function fact which is essentially a recursive function, when this

program is compiled and Elf executable gets created and when this program gets run the

virtual address space for this program gets created by the operating system, the OS would

load the code segments of this particular program into this text segment, it would load the

global data such as calls into the data segment and whenever there is a malloc like this, which

is dynamically allocated data, so this data gets allocated into the heap.

So finally we have this text segment, which comprises of the local variables, so in the

function main, the local variables are N and M, so this local variables are present in the stack,

so besides these, the stack also contains various aspects of function invocation and para

meters processing from one function to another, so details about this virtual address base can

be obtained from the proc directory present in your Linux operating systems.

(Refer Slide Time: 20:28)

On a Linux system, we would be able to look at the virtual address base by the hello world

program is executing, so this is done as follows, first we need to get the PID of the hello

world program, so for that we could run PS minus AE and grep hello, so we get a line like

this, where we see that the process hello is present and it has a PID 6757, now the file/proc

6757/maps contains the virtual address base for this PID 6757, which corresponds to our

hello executable, so the virtual address map looks something like this way, so as you can see

that there are various segments that are present, some which are present in the hello program

itself, some which are present in the Lipsey library while the other are presenting in the

loader library, also present is the stack and some internal segments like the VDSO.

Now this particular column present here specifies the various a virtual address ranges for the

various segments, so for example we have in the hello executable, we have a segments which

starts at 08049000 to 0804a000, the second column specifies the various flags for each

segment, so for example this particular segment which is present in hello has the, is readable,

writable and executable while they segment cannot be written to, it is only read and write

flags are set.

Now these three columns specifies details about from where the segment was actually loaded

from, so for example this columns specifies the offset in the Elf file from a particular segment

was loaded, now this particular columns specifies the hard disk number or the device number,

which is a major and the minor number for that particular disk, from where this particular

library was loaded and this one, this last column over here specifies the inode number, which

is essentially an identifier in the disk for this particular library.

So we have all of this information completely specifying the virtual address map for a

particular process, so one thing to note is that for this text segment, we see that the offset in

the file, device number and the inode is zero, so this is because the text segment is created

dynamically at runtime and the Elf executable and the Elf object files do not have any motion

about stack, now we will look a little more in detail about how the stack is managed in the

program.

(Refer Slide Time: 23:47)

So now we will see how the stack of a program is managed during the execution of the

program, so we will take as an example, this particular program, which comprises of two

functions, a main function and fact function, objective of this particular program is to

determine the factorial of this number N which is specified by the user and the way this

factorial is computed is by the function fact which is a recursive function that gets invoked

until a becomes one, so note that fact takes two parameters, one is int A and another one is a

pointer and the other one is an int star B, to understand how the stack is manage we would

have to know about two registers, one is the stack pointer register which is denoted as ESP

and the other one is the frame pointer register which is denoted EBP, now we have represent

this stack by this particular diagram, so we have a frame pointer, pointing to a location in the

stack and we have a stack pointer, pointing lower down in the stack, every time we push

something onto this stack, the stack pointer address reduces as we keep pushing into the

stack.

While as we pop from the stack, the stack pointer address keeps incrementing again, so we

further define something known as an active frame which comprises of the region between

the base pointer to the stack pointer, when the main function gets executed and let us assume

that the program counter is pointing to this particular location, now when the main function is

executing and the program counter is pointing to this particular instruction, then we have this

thing as the active frames, so we called this as a main stack frame and it is the active frame

because it is between the base pointer and the stack pointer, so this region is the active frame.

Now in this region, we have all the locals that are present in main to the present over here that

is the locals N and M are mapped to regions to memory regions present in this area, now let

us see what happens when the function fact gets invoked.

(Refer Slide Time: 26:15)

The first thing that main would do is to push the para meters N and M onto the stack and then

it would called the fact function, the call instruction would automatically push the return

address onto the stack, so the return address would be the instruction just following the fact

function and it would indicate the instruction to be executed soon after fact returns, so

therefore after the call to the fact function, you would have a frame, an active frame which

looks like this, there are the main the locals of the main function that is comprising of N and

M, you would have a para meters to the fact function, which here again would be a copy of N

and M, and then you would have the return address.

(Refer Slide Time: 27:06)

The next thing, what happens is that the fact function starts to execute, so the first thing that

the factors is to copy the frame pointer which was previously pointing to this location, so this

frame pointer gets copied onto the stack and then the frame pointer is moved to this location,

so now what we have seen is that we have got a new frame and this is now the active frame

and it is we call it as the stack frame for the fact function, the locals for the fact function are

then present on the stack and its bit, these locals are present between the base pointer and the

stack pointer, so as the fact function executes it will recursively invoke the fact function, so in

a very similar way as we have seen before.

(Refer Slide Time: 27:59)

When the fact function gets invoked again para meters to the fact return address and the

previous EBP gets pushed onto the stack and similarly there is space present for this fact

locals, so on the first return from the stack the previous base pointer which is pointing to the

previous frame gets loaded into the base pointer and therefore we would get the new fact

frame.

With this, we have given a small introduction to Elf loader and executable formats and then

we have also seen how processes execute and load this executes Elf executables and create a

virtual address basis and finally we have seen how the stack in the program operates, so one

thing for you to think about is about the command line arguments, so as we know the main

function actually takes a two para meters, one is an aug C and an aug V, so one thing that you

could think about is how are these arguments actually passed from the command line that is

from your shell to your program. Thank you.

