
Information Security 5 Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology Madras
Buffer Overreads

Mod03_Lec17

Hello and welcome to this lecture in the course for secure system engineering, so in the

previous lectures we had actually looked at one particular vulnerability in programs specially

in CC and C++ programs that vulnerability was caused due to buffer overflows in the stack,

so what we seen was that an attacker could use this buffer overflows to inject code into a

program and then forced that particular code to execute, so we called this as the subverting of

the execution and then the execution of the payload and then in the previous lectures we had

also seen a couple of phase where this buffer overflow type vulnerabilities could be invented.

Essentially we discussed a couple of countermeasures for the buffer overflow vulnerability,

introduce lecture we will look at an other vulnerability based on buffers, here we are going to

discuss about buffer overreads, so let start with a small example of what buffer overreads is.

(Refer Slide Time: 1:26)

So let us start with this particular example, so this particular program defines two global

arrays, one is known as some data which is initialised to some arbitraries string and other

array which is secret data which is initialised to topsecret, now in the main function there is

length define which essentially obtained from the command line argument, the first command

line argument is convert to an integer and it is used to initialise len and then we have this

while loop over here which prints characters of some data, the number of characters that get

printed depends on len and which in turn is specified by the user of this program in argv 1.

So there are two critical aspects in this particular program in order to understand the

vulnerability of this program, firstly the user of this program can specify how many

characters of some data he needs to print, if len is less than the size of this particular string

then there is no problem and a few characters and at most all the characters of some data

would get printed on the screen.

However the user specifies a very large number for len then these some data characters would

get printed as well as the adjacent characters stored in the memory would also get printed, in

this particular case the adjacent memory contains top-secret, so the value of len is large then

not only is some data printed but also top-secret has printed on the.

Therefore we actually run this particular program, we compile it as usual and run it in the

command line over here and specify as command line argument as 22, so len gets initialised

to 22 and it prints 22 characters starting from some data, so what is get printed on the screen

is not just some data but also the adjacent characters top-secret, so this we see is a very

simple example of a vulnerability due to buffer overreads.

What has happened here is that the array has been initialised to some specific size but the

user has managed to read more data than is required and essentially it is not just the array that

gets printed on the screen but memory adjacent to that particular array would also get printed.

(Refer Slide Time: 4:13)

So now if we look at the countermeasures that has been presented in the earlier lectures, we

had actually studied the user canaries, the W xhor X bit as well as ASLR, I just place a layout

randomization, with respect to the buffer overreads what we see over here is that the canaries

and the W xhor X bit will not work to prevent buffer overreads, this is because the canaries

essentially look for changes in the stack and with the buffer overread we are not writing or

changing anything on the stack but we are just reading the contents of the stack.

Similarly with the W xhor X orbit protection mechanism we are not going to execute

anything from the stack but rather since just we reading from the stack therefore the W xhor

X orbit countermeasure will also not work, now the third countermeasure that we have

studied the ASLR or the address space layout randomization will also not help to prevent the

buffer overreads.

Essentially the reason is that we are restricting ourselves to reading from the stack or from a

given segment of memory, now ASLR was useful to actually randomise the location of

libraries, therefore making attack such as the ROP attack more difficult to actually mount,

over here on the other hand since we are restricting the overreads to within a particular

memory segment therefor the ASLR countermeasure will also not work to prevent the attack.

(Refer Slide Time: 5:49)

Now let us take one particular example of buffer overread attack, so this particular attack is

known as heart bleed, so it was a malware that was introduced in 2012 and it was disclosed in

2014, so the CVE for the malware is over here, CVE- 2014 – 0160 and this particular

malware essentially used a buffer overread to steal critical information from a web server, so

the target was an open SSL implementation of TLS, so TLS is the transport layer security.

Now this particular open SSL library is widely used essentially when you want cryptography

or security in your web server applications, so the TLS or the transport layer security defines

a crypto protocol for secure communication, it is widely used for applications such as email,

web browsing, VoIP and instant messaging, it is used to provide both privacy as well as data

integrity, now what we will discuss in this particular lecture is one particular vulnerability in

this open SSL implementation which had got exploited by attackers to steal informations.

(Refer Slide Time: 7:10)

The vulnerability that was exploited in the heartbeat malware was specifically in something

known as the heartbeat message that is accompanied of the TLS library, now this heartbeat

message is sent between the client and the server and essentially use to keep the connection

alive between these two systems, so what is that over here is that one of these systems would

create something known as the heartbeat message and send that message to the other system.

Over here for example the client would create the heartbeat message and send that message to

the server, now the server would determine that it is indeed the heartbeat message and

replicate that particular message that it received and send it back the client, so this is kind of a

ping-pong kind of thing, where one system would send a message and the other system would

reply with the same message.

Now the heartbeat message look something like this, so it comprised of a 1 byte type over

here which essentially specified that this particular message was the heart a beat message,

second it had 2 bytes to specify the length of the payload, so therefore since its 2 bytes so the

payload be anything from 1 byte ranging to 2 power 16 minus 1 bytes and then finally you

have a payload over here and optionally there is extra padding that is also added.

So in our example over here the payload will be hello world, the length would be 12 bytes

because hello world comprises of 12 bytes and the type would be as follows, TLS1 HB

REQUEST.

(Refer Slide Time: 9:05)

Now we also look as the SSL 3 structure which essentially holds the heartbeat message, now

SSL 3 structure has a lot of elements but the important ones with respect to the heartbeat

message are just two, one is the D length which is defined as unsigned int and the other one is

data which is essentially a string, unsigned character pointer, now this data is essentially the

heartbeat bit message, which we have discussed earlier comprising of the type, the length of

the payload and the payload itself.

Now notice that we have two lengths that are involved in this particular heartbeat message,

one is the D length which is present, so this D length is defined in the outer structure and the

second one is the load length which is essentially part of the heartbeat message which is part

of the data defined over here in the SSL 3 structure.

(Refer Slide Time: 10:07)

So the D length specifies the entire size of the heartbeat message including the type, length as

well as the payload but the length inside the heartbeat message that is the payload and just

specifies the length of the payload, now the payload length that is this length is controlled by

the creator of the heartbeat message, for example if the client system has creating the

heartbeat message then the client system can decide on what is the length of the payload.

Another observation we see over here is that the payload length should be strictly less than

the D length, however in the actual code of the in open SSL TLS library this check was never

made, so as a result of this what could happen was that the client system which created this

heartbeat message could create or set a particular length for the payload which is very large

and since this length was never checked it could result to the buffer overread, since the

payload length was never checked with respect to the D length it could result in a buffer

overread, so let us look at the heart bleed attack with an example.

(Refer Slide Time: 11:25)

So we have a client system over here which has created a malicious heartbeat message, so the

heartbeat message would look something like this, it would, first is a type which is a 1 byte

which specifies the TLS HB REQURST, the second one is the length where maliciously the

client system has filled in the maximum length that is, since a length is of 2 bytes, so the

maximum length could be 2 power 16 minus 1 which is 65535.

So now over here in the payload data the client system just fills in 1 byte even though it has

specify that the length of the payload is 65535 bytes, now what happens during the

communication is that this particular a heartbeat message is wrapped in SSL 3 structure, now

the SSL 3 measures the length of this message as just 4 bytes, 1 for this type, 2 for length and

1 for this data which it has found, so thus it was specify the D length as 4 bytes.

So what happens in the victim that is our web server is that the web server completely ignores

the D length part over here and just looks at the length within the heartbeat message, thus

what it is going to do? It is going to copy the payload which is present over here that is 1 byte

of payload and also it is going to because the length is specified as 65535 bytes, therefore it

will also copy all the adjacent bytes that are present in its memory.

Thus the response from the victim would look like this way, it would comprise of 1 byte for

type that is TLS HB RESPONSE, the length would be specify as before as 65535 bytes and

the payload data would comprise of the 1 byte that was sent by the client machine as well as

65534 adjacent bytes, thus this particular packet gets wrapped in the SSL 3 response and

therefore the length in the SSL 3 responses 65538 bytes, so D length in the response from the

server to the client is 65538 bytes.

Now what is happening here is that there is a buffer overread and the servers data present in

that particular segment gets transferred to the client and what was actually demonstrated in

this heartbeat malware was that a lot of sensitive data held in the server was actually leaked

to the client machine.

(Refer Slide Time: 14:10)

So we will take dig a little more deeper into how the heartbeat actually works and we will

look at the open SSL code which actually have the vulnerability, so the important function for

us is this particular function that is the TLS process heartbeat okay, so we have here a pointer

P which is define and this pointer is initialised to the heartbeat message that is the data

present in the SSL 3 packet which was obtained.

The next important part is these three statements over here where at the server end, the server

is trying to evaluate the hard packet that it has obtained, first thing that server would do is

determine the heartbeat type which as we have seen before is the TLS HB REQUEST, so then

it would extract the payload length which is then stored in the load, so this is the 2 byte length

which gets stored in this payload variable present here and finally there is a pointer P1

defined which points to the actual payload data.

So the next thing will look at is this particular response over here which is a call to the malloc

function, so this malloc is call to essentially create the response which is sent back from the

server to the client, note the critical aspect over here is that the size requested to malloc

comprises of 3 bytes plus the payload length plus the padding and the padding is as specified

16 bytes and payload since it is the payload length and as we seen over here the payload

length is 65535 bytes therefore the size of the response is going to be 3 plus 65535 plus 16

bytes.

The fourth critical point in this function is this invocation to memcpy, so this invocation to

memcpy essentially creates the response from the server back to the client, it essentially fills

the recently created a buffer with the payload data that client has sent, so note that even

though the client has sent 1 byte, since the payload specified was 65535 therefore the buffer

would actually contain data of 65535 bytes, so out of these 65535 bytes there is only one byte

which contains what the client had actually sent and the remaining bytes is due to a buffer

overread where 65534 byte adjacent to that one byte is copied into the buffer.

(Refer Slide Time: 16:51)

Now this buffer which has just created is wrapped in the SSL 3 structure and sent back to the

client, note that we are sending the buffer here and the size of this particular packet is 3 plus

payload plus the paddle, thus what the client obtains is the response to its heartbeat message

comprising of just one byte which is actually sent and the remaining almost 64K bytes of data

which it has gleaned from the server.

(Refer Slide Time: 17:24)

This particular slide shows the dump of the data which is obtain from some server, so what

we see over here is that a lot of information present in the server gets leak to the client, many

of them are critical information such as the login account and so on, aspect such as the

password and so on get heap from the server to the client, so each invocation of a malicious

heartbeat message would allow the client to read about 64K of server data, by repeatedly

creating the such malicious heartbeat packets over a period of locations the client machine

would able to glean almost the entire heaps space of the server.

(Refer Slide Time: 18:07)

So the heart bleed vulnerability was known to the public in 2014 and it took just a few days,

some 2 or 3 days to actually fix this vulnerability and patch the open SSL code as you would

understand by now the flaw or the vulnerability in the code was very minor, all that was the

problem was that there was that the D length could be much smaller than the actual payload

length, so what I would like you to think of right now is to look at this code and figure out

how or what statements to be added in this code so that the heart bleed vulnerability can be

fixed. Thank you.

