
Information Security 5 Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology Madras
Address Space Layout Randomisation (ASLR)

Mod03_Lec15

Hello and welcome to this lecture in the course for secure systems engineering, so in the last

two lectures we had actually looked at how one particular vulnerability in the stack can be

exploited by the attacker, in the earlier lecture we had lecture we had looked at return to

Lipsey attack where the attacker overflows a buffer present in the stack and replaces the

return address with one specific function in the lipsey library, then the last lecture we had

looked at a more advanced form of attack where the attacker is not restricted to functions in

the lipsey but could create a payload which executes almost any arbitrary instructions and the

way the attacker does this is by a concept of ROP programs or return oriented program.

So these attacks are some of the most advanced attacks on programs, in this particular lecture

we will be looking at a concept known as ASLR or address space layout randomisation in

order to prevent such ROP and return to lipsey attacks, so in order to understand the impact

of ASLR, we would look at these attacks from the attackers prospective.

(Refer Slide Time: 1:41)

So the attackers plan is as follows, the attacker let us say wants to create an exploit for a

particular application, let us say the application here would be the operating system and say

for example the application here for example could be the operating system kernel, so the

first thing as we know the attacker should be doing is to find a vulnerability in the operating

system kernel, the way he do to this is by looking at the source code or by noticing something

in the patches that get applied to the operating system kernel and find out that there is a

vulnerability in one of these patches or the patches actually fix and a specific vulnerability or

the third way is by following the CVE.

So once he has found a particular vulnerability the source code, the next thing is to use this

vulnerability to subvert the execution, the next part is to use this vulnerability to inject

malicious code into that particular application, example is the application happens to be the

operating system kernel the malicious code for instance could obtain a shell which has root

privileges.

Now as we know if the attacker obtains a shell with root privileges then he gets complete

control of the entire system, now from the last three attacks we have studied in this course

what we do understand is that the payloads that the attacker writes is highly dependent on the

addresses for example in the ROP attack, the attacker would need to know the exact

addresses where these gadgets are present in the lipsey library.

So for example over here in this case the attacker would need to know where the address of

gadgets1, gadget2, gadget3 and gadget4 are present in the library, this assumption, the

attacker assumption is that if he is able to find these gadget in a particular system, so the

attackers assumption is that if the attackers assumption is that, if he is able to find these

gadgets in a particular system then that attack would be successful.

Now the address space layout randomisation or the ASLR works so as to make it difficult for

the attacker to find such gadgets, what the ASLR achieves is that it randomises the address

space of an application, thereby making it difficult for the attacker to get specific addresses,

so for example in this figure as we see over here which shows the memory layout for three

different instances of the same application, so what we see over here is that the memory

layout changes every time you run the application.

Let us take for example one particular library over here which is known as the ADVAP123,

so this is present at a particular location during the first part of the application, during the

second run the ADVAP123 is present at another location and in the third run, third location

and so on, so since this location are changing in every run of the application, it would be

difficult for the attacker to identify the exact location where the gadgets are going to be

present, thereby preventing the ROP attacks from executing.

So the ASLR is not a new concept, it was initiated by the Linux PaX project in 2001 and

since 2012 or 2013 it is becoming quite common and by added by default in the operating

system, Windows and Linux operating systems now support ASLR by default.

(Refer Slide Time: 5:58)

In the Linux operating systems ASLR would randomize the locations of libraries, the location

of the heap, the stack and so on with each run of the application, so if you are current Linux

system especially in Ubuntu systems, you can look at this particular file, you can cracked this

file/proc/sys/kernel/randomize_va_space to determine whether your operating system has

ASLR enable or not.

So this particular file would have 3 values 0, 1 or 2, 0 means that ASLR is disable in that

particular system, while 2 has the highest level of randomization, where 2 is the highest level

of randomization with a value of 1 what is achieved is that the position of the stack is

randomized, similarly the positions of the VDSO, shared memory regions and so on are

randomized with the value of 2 what it means is that it achieved all the randomization that is

achieved with 1 as well as the data segment location are also randomized, so this 2 now is the

default setting in most Linux systems.

(Refer Slide Time: 7:22)

So let us look at ASLR in action, so what you can do is you could run a particular program

find out that PID of that program and as we have done before looked at the memories space

of that particular program by this particular command cat/proc the PID value of that

particular process/maps and you would get the memory map, now if you run that same

program again obviously you would get a different PID and if you look at the maps for that

new process you would see that it is a change in the address map and this change is occurring

due to ASLR.

Let us take for example the library, the lipsey library, so in the first run the lipsey library is

present at this location b75d 000 while in the second run the same lipsey library is present at

the b75de000, just we see that each run of the an application thus we see with each of the

application, the memory address we see each of the application the virtual address map for

that application is changing.

Now since a virtual address map changes the locations of the gadget would change therefore

the ROP space attack which the attacker has created will not work all the time, so for your

linux procs you can actually change the value of the ASLR by editing this particular file

/etc/sysctl.conf in this if you actually add this line like kernel.randomize_va_space and

specify a value of 0, 1 or 2, the support for ASLR can be modified for your particular system.

(Refer Slide Time: 9:21)

So will now look at the internals of ASLR in order to understand this we will need to know

how libraries are made relocatable essentially there are two ways to achieve this one is

known as the load time relocatable and the other one is known as the PIE or PIC which stands

for position Independent executable and position independent code respectively, in the load

time relocatable the main functionality rest with the loader where when the library gets

loaded, the loader would pass through the library and adjust each address properly, so that the

library executes in the right expected manner.

In the PIC technique relative addressing is extensively used to achieve the same purpose, so

will be looked at both the load time relocatable as well as the PIC executable in more details.

(Refer Slide Time: 10:23)

So let us start with load time relocatable and let us say that we want to create a library like

this, so this is the library we create it comprises of one global variable called mylib_int and it

has to functions setmylib_int which are essentially takes a parameter X and sets our global

variable to that particular value and the second function get mylib_int returns the current

value that global data mylib_int.

So now you can compile this library by using GCC as shown over here, now by default at

least in my compiler, yes in this compiler by default compiling it when this particular syntax

will create a load time relocatable code, now this particular code can be also obtained from

this link in the directory source/relocgot, to understand how low time relocatable code works,

we disassemble this library using OBJ dunk and we just evaluate one of these functions

which is the setmylib_int.

(Refer Slide Time: 11:30)

So as we see over here these are the instructions for setmylib_int and the first two instructions

creates the stack frame for that particular function, the third instruction this one here moves

the content of X that is present in this location EBP plus 8 which essentially is the argument

this particular function, so the argument X’s move to the EAX register then the contents of X

should be stored into the global mylib_int, in order to do this we have this mov instruction

where EAX register is moved to 0X0.

So this 0X0 is something what the compiler has put in because this library is low time

relocatable library, next we see what happens when we actually executes a program that uses

this particular library, so what we do is that create a program link it to this particular library

and then use GDP on that program, notice that the actual address of mylib_int is not filled in

over here in fact it is just left is 0X0.

So what is expected is that when this library gets loaded, the loader would pass through each

of this functions and wherever there is 0X0 it would replace that with the actual address of

mylib_int, so in order to achieve this there is special section in the library which will permit

the loader to determine which locations the object file need to be modified at the load time, so

this particular section is known as the relocatable table, so we can obtained by using this

command readelf-r-libmylib.so, that is the library that we have created.

So notice that we have several entries over here but two interested entries for us is the first

and second, so each of these entries determines the exact location in the library code at the

loader would need to modify, notice that a mylib_int is used in exactly two locations, one is

at this point over here in function setmylib_int and the second one is at this location

getmylib_int, each of these locations have an entry in this particular table.

So notice that the locations which we need to modify is at an offset 473 and 47d in the object

file, so you could see that the location 473 corresponds to this 0X0 so know that this is at an

offset 472 that is A3 is at an offset of 472 and 473 corresponds to this particular 0s, another

thing to note is that type, so each of these types is of 32-bit thus at a time when this particular

library gets loaded, the loader would look into this table and passed through each row in this

table, it will go through this location 473 which corresponds to this 0X0, it would determine

that here there is at 32-bit value that is required and this value corresponds to the mylib_int

and therefore it would obtain the correct address for mylib_int and replace the 0X0 with the

actual address of mylib_int.

So in order to check whether the loader is actually doing its job what we can do is we can

write a small program which is linked, which will link to this particular library that will

compile that program and use GDP to debug that particular program as follows.

(Refer Slide Time: 15:52)

So what we do is we set a breakpoint in main and then when the breakpoint is hit, we do a

disassemble setmylib_int in GDP, so notice the difference between this assembly code and

this assembly code, so this assembly code is what the compiler gives out after compilation of

the library, while this assembly code is what is obtained at runtime after the loader has

inserted the library into the address space, note the same instructions over here you have push

EBP mov stack pointer, base pointer and so on, the same instructions are present over here

but also notice that the 0X0 which is present in this instruction is replaced with this address

B7FTF5F8 which is the actual address for mylib_int.

So, notice that the loader has achieved on his job, it has replace zero in this location with the

actual address of mylib_int, similarly you could also check that the mylib_int in this get

mylib_int is also replaced to point to the correct address of mylib_int.

(Refer Slide Time: 17:08)

So the limitations for the load time relocatable technique is that it has extremely slow load

time, since essentially we have the loader which passes through each and every location

which needs to be modified and fills and replaces the zeros in that location with the actual

address, secondly it requires a writable code segment, which could essentially pose problems,

the third limitation of load time relocatable technique is that it prevents sharing of executable

code, will not go into the details about this but in operating systems there is a process called

copy on write.

Where typically library codes are all shared between all processes in the system, third

limitation of the load time relocatable code is that each program code, should have its own

customized copy of the library, so this is not what we want in practice, in practice typically to

prevent publication all programs that are running in a machine would use the same copy of

the shared library, for example Lipsey all programs that are run in the system would use the

same copy of Lipsey, so as not to duplicate Lipsey in the ram, however with load time

relocatable since each a program need a very customized version of the library, that for such

kind of sharing will not be possible.

(Refer Slide Time: 18:39)

A lot of the disadvantages of the load time relocatable technique are removed by using PIC or

programmable independent code technique, so with this particular technique libraries can be

made relocatable in the virtual address space of the process, so essentially what is the done

here is that a lot of relative addressing is used additionally instead of relying on the loader to

actually change each and every address in the code, a special table known as global offset

table or GOT table is used, so we will see how this PIC works and how the GOT table is used

to resolve the actual address of a variable.

(Refer Slide Time: 19:21)

So let us say that we have an instruction like this where we want to move the address of a

variable to this register EDX, now typically without GOT we would require to know the

actual address of this particular variable and therefore this particular instruction would result

in non-relocatable code, if you have a global offset table however the same single instruction

gets converted into three instructions as follows, first we load the address of the GOT table

into this register called EDX then we load an offset in the table more precisely an offset of 16

bytes in the table into this register EDX.

Then we load an offset into the table more precisely an offset of 16 bytes into this register

EDX, now at this location EDX plus 16 bytes what is present is the actual address of this

particular variable, next what we do is load the contents of this EDX register into this

particular register thus we see that instead of directly loading the address of the variable into

the EDX register which is making the code non-relocatable instead we use the GOT table, the

GOT table contains the actual addresses where the variables are present and therefore we load

the content of the GOT table and access the actual variable directly using the contents of the

EDX.

(Refer Slide Time: 21:16)

So we will take our library that we have created and see how the compiler generates code for

using this GOT table, so the code that we will take is as before comprising of our two library

functions setmylib_int and getmylib_int and more importantly at this particular time is this

particular global variable mylib_int, so we have seen what happens when the load time

relocatable code, now with PIC the code looks much different for setmylib_int, so what we

see is that additionally there is a call to some function called I 686 get pc thunk and

additionally there are certain other changes as well.

So let us look at more details, so first we see the call instruction which are essentially is a call

to this particular function over here which stores the contents of the stack pointer into the

ECX register and then returns, so what we see over here is the contents of these ECX register

we have the address of this particular instruction, now you had 1180 to the contents of this

ECX register, so this 1180 is the offset for the GOT table, so ECX +1180 is an offset to the

got table.

Further we subtract 8 bytes 1 ECX which is an offset in the GOT table which contains the

actual address of mylib_int, so this actual address of mylib_int is move into the EAX register,

third we note that we are storing contents of the EDX register into the location pointed to by

the EAX register, so note that the EAX register contains the pointer to the correct address of

mylib_int, therefore the store instruction would store the contents of the EDX register to the

correct location of mylib_int.

(Refer Slide Time: 23:12)

So the advantages of using PIC technique that is with using the GOT is that you have reduced

the load time considerably, unlike the previous case where the loader goes on changes each

and every location where the global data is used, here we are using a single GOT table which

stores the correct address for the global data, thus the overheads by loading the library is

reduced considerably, further most if you are not changing achievable code, which we not

required that the codes segments are writable.

This is quite unlike the load time relocatable technique value actually required the code

segment to be writable, further since we do not require customized libraries for each program,

we can actually share the libraries between various programs in the system, all of these

advantages are achieved because of the GOT table, the GOT table is present in the data

segment and as we know the data segment is writable, therefore add load time all that the

loader needs to do is go and fill in the GOT table.

The drawback of this particular scheme is that now the runtime overheads have increased,

instead of directly going and accessing a particular variable, now we need to find out the

actual variable from the GOT table and then make an indirect access to that particular

variable, thus resulting in increased runtime.

(Refer Slide Time: 24:39)

Let us look at an example of working with GOT, let us take this small example where we

have a my global data initialize to 32 and in the program we increment with the global data

by 5 and return that value, now in order that the compiler generates a GOT table, we need to

specify additional option at compile time which is minus shared minus fpic.

(Refer Slide Time: 25:02)

The assembly code for this particular program look something like this it has got a data

section over here which is my global and it has got the codes so went over here which is

under this my text, so note that the compiler has created these additional functions

getpc_thunk.cx which are essentially loads the address of the next instruction into the ECX,

more details we see that this particular instruction adds the offset of the GOT table to the

ECX register.

Then we load the absolute address of myglob global variable from the GOT table into the

EAX register and finally we can indirect load of the myglob global data to the EAX register,

so after these for instructions we are finally been able to load the contents of the EAX

register, the disassembly of this particular code look something like this, so we see that there

is a data segment comprising of this global data myglob and the codes segments starts from

this particular section, which is denoted as the text section, as we see over here these are the

important instructions which we have to analyse, so first instruction we see is that there is a

call to this get_pc_thunk.

What this call does is that it jumps to this particular function over here, those the contents of

the stack pointer into this ECX register, thus the ECX register contains the address of this

particular instruction, the addl instruction, in this instruction what we do is add the offset of

the GOT table, the global offset table to this ECX register, so now the ECX register as the

contents of the GOT table, now we take a offset in the GOT table and that to ECX and load

the contents into EAX register.

So now EAX register as the correct address of myglob, the global address, now we load the

contents of that global data into EAX register, thus at the end of this instruction the EAX

register has the contents of myglob which is 32, we added 5 to this contents and return this

particular data.

(Refer Slide Time: 27:32)

If we use readelf to determine the various sections of the eroded file that we have just

compiled, we see that the 19th section as the GOT table, so this is at an offset of 584 bytes and

has an address of 1584 from the start, further we can then look at the relocatable data and see

the offset of this global data myglob in the GOT table.

(Refer Slide Time: 27:59)

So now that we know how a library can be made relocatable either using the PIC technique or

by low time relocatable, we will now see how ASLR works, so in order to understand this we

have look at snippets of the operating system, essentially what is happening is that when the

operating system invokes this function load elf binary, so this particular function is invoked

when you want to either load binary data to a process or a shared library gets loaded into a

particular process.

So in the operating system you would have a function like this and importantly for us there is

a if condition is and here where we check whether this randomize_va_space is greater than

one, so we collect that in the Linux systems the randomize_va_space would take 3 values 0, 1

or 2, if the value is either 1 or 2 it would mean that ASLR is enable on that particular system,

so if ASLR is enable on the system we invoke this part particular function

arch_randomize_break which essentially is present here.

So what this function does is invoke this randomize range which returns some particular

random address, so this random address is then return here and at this random address is

where the library is loaded, thus we see how the operating system uses some random location

in the process address space in order to load the library, further on the time of loading the

loader would either fill the GOT table or go specifically to those particular locations and fill

addresses in those global data.

So in addition to the data even the function should be made relocatable, in the next lecture we

will see how functions are made relocatable. Thank you.

