
Information Security - 5 - Secure Systems Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
Demonstration of Canaries, W^X, and ASLR to prevent Buffer Overflow Attacks

Hello and welcome to this demonstration in the course for secure system engineering. So in

the previous demo what we have seen is that we overflowed a buffer and we were able to

execute a payload and we this payload actually created a shell and what we mentioned is that

if an attacker creates such a shell forcing a particular application to be subverted from its

execution, the attacker would be able to run whatever is possible from that shell.

(Refer Slide Time: 0:52)

So in the other videos that we have looked at we have seen that there are several

countermeasures that have been implemented in standard systems. So in fact we had looked

at three different countermeasures one is the NX bit or the WX or X bit which is present in all

Intel AMD processors as well as many of the microcontrollers as well. So what we have seen

is that, this bit would ensure that a particular page in memory is either executable or is

writeable.

So therefore the example in the stack this particular bit would ensure that you cannot execute

code from the stack and other countermeasure that is implemented by some of the modern

day compilers is by the use of canaries the canaries present in each stack frame would detect

that a buffer is overflowing and crossing that particular stack frame and this would be caught

during the function return and the subversion of the execution is prevented.

The third thing that we also looked at was address space layout randomization or ASLR with

this a countermeasure, what was possible was that the locations of the various modules within

a particular program is randomized at each run. Therefore, the attacker would not be able to

specify where the subversion should occur and to which location should the return be present,

on other words the attacker will find it difficult to actually identify the address at which the

payload would be present.

So to demonstrate these three countermeasures we look at the previous example that we took

of the buffer overflow. So what we do is that we take the same example as we have done in

the previous video which is test code dot code dot c, which comprises of these two functions

and as we seen in the previous video we overflow this buffer this local buffer and using the

vulnerability in the string copy forces a payload which would create should shell to execute.

(Refer Slide Time: 3:21)

So we will see an example of this working again, so we first make this as follows, okay and

then we can run this particular code using this argument. So what we are passing here is the

file E3 which comprises of the payload comprising of the shell code that we want to execute

and when we run this what we see is that it successfully creates a shell. So this particular

program is running because we have disabled all the countermeasures so we have disabled

ASLR, we have disabled canaries, as well as we have disabled the stack protection.

So what we will do is that we will enable each of these one by one and then we will see how

this shell code is prevented. So the first thing we will look at is that of canaries. Now canaries

is added by the compiler by default and what we have done previously was that we have

specified this compiler parameter minus F no stack protector which would actually disable

the canaries.

Now suppose we enable canaries let us see what would happen. So instead of minus F no

stack protector we would change this to minus F stack protector which forces that canaries be

present in every function. So we would compile the code again, notice that it is compiled now

such that canaries would be present in the functions. So now if you run the same executable

giving the same payload, what we obtain is that stacks machine gets detected.

So what has happened here is due to the edition of the canaries in each functions stack the

buffer overflows due to the string copy gets detected and caught by these canaries and

therefore before subversion actually obtain is done the program terminates with a stack

smashing detection.

(Refer Slide Time: 5:52)

So let us add the canaries again just to get things back and look at the next aspect. So the next

thing which we will look at is the WX or X bit. Now the WX or X bit by default is enabled in

every Linux system and what we have done previously was to disable this WX or X setting

with this minus Z exec stack. So if I remove this particular command line parameter, compile

the program as before and execute the program, what happens is that instead of subverting

execution and creating the payload we get a segmentation for it.

The reason being is that this payload (has) would successfully overflow the buffer and it will

overflow the return address and modify the return address and act the return of the function it

would try to execute code from the stack. Now since this particular function by default would

have its stack as non-executable therefore the processor detects this as an illegal execution

being made and falls the program and therefore the program terminates.

(Refer Slide Time: 7:32)

So let us get this back and we will put this command line parameter again to ensure that the

stack becomes executable and we are able to run a payload from the stack and therefore we

are essentially disabling not just the canaries but also disabling the check for execution from

the stack, we run this code again and we see that we obtain the stack due to the two

countermeasures being disabled.

(Refer Slide Time: 8:16)

So now let us look at the final countermeasure which is ASLR, now the status of ASLR on

Linux systems can be obtained from this particular file randomize underscore VA underscore

space which is present in this directory slash proc slash sys kernel randomize underscore VA

space. A value of 0 in this file indicates that ASLR is disabled on this system. In order to

enable ASLR on this particular system temporally what we need to do is change the contents

of this file to either 1, 2, or 3.

So let us say that we actually change this value to 3, we can do so by specifying sudo because

changing the file requires sudo, sudo sh minus c echo 3 and this you redirect the output into

slash proc sys kernel (())(9:30) slash randomize VA underscore space, so we need the

password which is which are 1, 2, 3. So in this way we have changed the value of randomize

underscore VA underscore space from 0 to 3.

So we can verify that it indeed has changed by printing out the result the contents of that

particular file. So what we have done here now is we have enabled ASLR, so with this

enabling let us see if the program still works. So we would run the same program and we see

that it has successfully prevented the attack. So because ASLR is enabled therefore we get a

segmentation fault.

The reason being that the return address which we have overwritten next (())(10:29) to the

location ffffcf70 would no longer have the stack the randomization would ensure that the

location of the stack would be changed with every execution and this would prevent the

attack, thank you.

